Free考研资料
标题: 2014考研数学备考重点解析 ——一维随机变量函数的分布 [打印本页]
作者: 爱kaoyanba 时间: 13-9-24 18:25
标题: 2014考研数学备考重点解析 ——一维随机变量函数的分布
2014考研数学备考重点解析
——一维随机变量函数的分布
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image002.png
随机变量函数的定义:设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image004.png是一个定义于file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image006.png的函数(file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image004.png一般为连续函数),随机变量X的函数file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image008.png是指这样的一个随机变量Y:当X取值x时,它取值file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image010.png,记作file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image012.png
一、离散型:当X为离散型随机变量时,已知X的分布律,求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image012.png的布律.
设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image015.png,则file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image010.png的分布律为:
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image017.png
注:取相同file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image019.png值对应的那些概率应合并相加
二、连续型:当file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image021.png为连续随机变量时,已知X的概率密度,求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image012.png的概率密度. 为求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image012.png的概率密度,通常先求它的分布函数(即分布函数法)
设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image021.png的概率密度为file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image025.png,则file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image010.png的分布函数为:
对file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image027.png,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image029.png
其中file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image031.png是与file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image033.png相等的随机事件,而file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image035.png是实数轴上某个集合(通常可以表示为一个区间或若干区间的并集).
注:1.如果file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image037.png,当file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image039.png时,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image041.png,特别,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image043.png.
2.通常连续型随机变量file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image021.png的概率密度是分段函数大学考研,所以用分布函数法的时候,最重要的是讨论各种情况.
【例1】设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image021.png的分布律为:
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image047.png
求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image049.png的分布律.
【解析】
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image051.png
【例2】设随机变量X的概率密度为file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image053.png F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
【解析】本题主要考查一维连续型随机变量大学考研函数的分布,我们用分布函数法进行讨论.
易见,当x<1时,F(x)=0;
当x>8时,F(x)=1.
对于x∈[1,8],有file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image055.png
设G(y)是随机变量Y=F(X)的分布函数.显然,当y≤0时,G(y)=0;当y≥1时,G(y)=1.
对于y∈(0,1),有
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image057.png
=P{X≤(y+1)3}=F[(y+1)3]=y.
于是,Y=F(X)的分布函数为
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image059.png
欢迎光临 Free考研资料 (http://bbs.freekaoyan.com/) |
Powered by Discuz! X3.2 |