Free考研资料

标题: 大神求教 [打印本页]

作者: Bobjkl    时间: 14-7-23 08:02
标题: 大神求教
为什么这两张照片中一张利可以用洛必达法制而另一张不行
作者: 王艳丰    时间: 14-7-23 10:37
有这样的关系:
1》函数在某一点x0 可导 则, 它的上一级函数(比如一阶导,那么就是它的原函数;二阶导,那么就是它的一阶导)在x0的邻域内是连续的,可以使用洛必达法则(虽然洛必达法则是要求导数存在,但是它是个后验性的定理,所以知道函数连续后就可以尝试着使用洛必达法则,若解出来极限不是常数则回过头用定义求)
2》函数在某一点x0 可导 ,不代表它在x0的邻域内都可导, 所以就不能用洛必达法则(甚至没有使用洛必达法则的“资格”,你可以把 连续 看成是“有资格”使用罗比法则的条件)
作者: Bobjkl    时间: 14-7-23 15:28
还是有点不明白,第二题它x0可导,是否可以说明函数f(x)在x0连续
作者: Bobjkl    时间: 14-7-23 15:29
王艳丰 发表于 14-7-23 10:37
有这样的关系:
1》函数在某一点x0 可导 则, 它的上一级函数(比如一阶导,那么就是它的原函数;二阶导, ...


还是有点不明白,第二题它x0可导,是否可以说明函数f(x)在x0连续
作者: 王艳丰    时间: 14-7-23 16:45
Bobjkl 发表于 14-7-23 15:29
还是有点不明白,第二题它x0可导,是否可以说明函数f(x)在x0连续

第二题说f(x)在x0三阶可导,等价于f'''(x0)存在;

可以推出 f''(x)在x0的邻域内连续;(依据:由一点处的可导推出上一级函数在该点的邻域内连续)

再推出f'(x)  在x0 的邻域内连续;(依据:导数在区间内连续则原函数在区间内也连续)

再推出f(x)在x0的邻域内连续;(依据:同上)

作者: Bobjkl    时间: 14-7-23 19:35
王艳丰 发表于 14-7-23 16:45
第二题说f(x)在x0三阶可导,等价于f'''(x0)存在;

可以推出 f''(x)在x0的邻域内连续;(依据:由 ...

那第一题不是说它在x0处可导是否可以推出f(x)在x0处连续
作者: 王艳丰    时间: 14-7-23 20:42
Bobjkl 发表于 14-7-23 19:35
那第一题不是说它在x0处可导是否可以推出f(x)在x0处连续

第一题是题中没有说f(x)在x=1的邻域内可导,所以不能用洛必达
作者: Bobjkl    时间: 14-7-24 16:25
王艳丰 发表于 14-7-23 20:42
第一题是题中没有说f(x)在x=1的邻域内可导,所以不能用洛必达

按照第二题的解释,第一题也应该是连续的是吗
作者: sonyz44    时间: 14-8-1 19:40
对于y=f(x),可导必连续,若一点可导只能推出这一点连续




欢迎光临 Free考研资料 (http://bbs.freekaoyan.com/) Powered by Discuz! X3.2