Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

请教变限积分一道题????

[复制链接]
跳转到指定楼层
楼主
rxjhliuming 发表于 10-8-12 11:35:42 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
设f(x)是奇函数,且X≠0时处处连续,而X=0是f(x)的第一类间断点,试证明F(X)=∫f(t)dt (0到X的变限积分)是连续的偶函数

我的问题是1,X=0是f(x)的第一类间断点,这句换作用是什么?和f(x)是连续函数有何异同

2,若x=0是f(x)的第2类间断点呢,又该如何求
沙发
juncaisjtu 发表于 10-8-12 12:56:49 | 只看该作者
第一类间断点可以补充定义,证明就简单了;第二类间断点结论就不成立了~像y=1/x,积分后就是lnx了,无奇偶性~
板凳
 楼主| rxjhliuming 发表于 10-8-12 16:18:11 | 只看该作者
为啥非得补充定义呢,间断时不能按连续函数那么求吗??
地板
xiaomimixixi 发表于 10-8-13 20:12:56 | 只看该作者
1.我觉得没什么区别,做法是一样的,因为在一点的积分没有意义,就像在连续区间内可以将积分转化称多个区间相加。
2.如果x=0是第二类间断点,则f(x)不可积,则该题也就不成立了。
不知对不对,请各位多多指教。
5#
寒武纪的魔法 发表于 10-8-14 14:09:53 | 只看该作者
其实楼上的第二句话明显错误。第二类间断点往往可积,比如y=1/x,积分后就是lnx了,二楼答对了70%,因为如果f(x)有第一类间断点,从原理上他是不可积的,而非补充定义的一说,那为什么非要补充X=0是f(x)的第一类间断点呢?理由非常简单,题目降低难度,合理地把第二类间断点的可能性排除,其实楼上的解释是合理的,在一点处积分无意义,只是他犯了原则的错误“如果x=0是第二类间断点,则f(x)不可积,则该题也就不成立了”,所以我指出来谢谢
6#
千禧旭 发表于 10-8-14 15:39:44 | 只看该作者
这是一个结论。如果导函数是奇函数,那么原函数是偶函数(条件是导函数连续,或者有有限个第一类间断点)。
切记:导函数如果是偶函数,原函数不一定是奇函数。
这种结论证明不需掌握,选择题会用即可,在大题中也不会作为采分点出现,直接应用就行!
7#
gsy2008 发表于 10-8-14 20:32:49 | 只看该作者
其实说第一类间断点就是强调在X=0不可导,没什么别的意思  求从0~X的定积分要注意是从0+开始求这点不能搞错
对于第二类间断点其实就是想强调在0+或者0-有极限为∞  注重简单的定义就不会迷糊
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 24-12-2 12:49 , Processed in 0.083037 second(s), 12 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表