下面是文都网校小编整理的考研数学概率论部分的重难点,供2017考研的各位同学参考,帮助各位同学总结整理此部分的内容。 一、随机事件与概率 重点难点: 重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式 难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算 常考题型: (1)事件关系与概率的性质 (2)古典概型与几何概型 (3)乘法公式和条件概率公式 (4)全概率公式和Bayes公式 (5)事件的独立性 (6)贝努利概型 二、随机变量及其分布 重点难点 重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布 难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布 常考题型 (1)分布函数的概念及其性质 (2)求随机变量的分布律、分布函数 (3)利用常见分布计算概率 (4)常见分布的逆问题 (5)随机变量函数的分布 三、多维随机变量及其分布 重点难点 重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布 难点:多维随机变量的描述方法、两个随机变量函数的分布的求解 常考题型 (1)二维离散型随机变量的联合分布、边缘分布和条件分布 (2)二维离散型随机变量的联合分布、边缘分布和条件分布 (3)二维随机变量函数的分布 (4)二维随机变量取值的概率计算 (5)随机变量的独立性 四、随机变量的数字特征 重点难点 重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数 难点:各种数字特征的概念及算法 常考题型 (1)数学期望与方差的计算 (2)一维随机变量函数的期望与方差 (3)二维随机变量函数的期望与方差 (4)协方差与相关系数的计算 (5)随机变量的独立性与不相关性
|