Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

2018考研数学重点:线性代数方程组19个高频考点

[复制链接]
跳转到指定楼层
楼主
foreverlover 发表于 17-4-7 10:50:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
线性方程组求解这部分的出题一般是会出一道大题,而向量的线性相关性问题一般转化为线性方程组有无解的问题,因此大家可以把两者串联在一起进行复习。
其中我们应当掌握:
1、非齐次线性方程组解的结构及通解;
2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;
3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;
4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;
5、向量、向量的线性组合与线性表示的概念;
6、用初等行变换求解线性方程
7、基变换和坐标变换公式,过渡矩阵。(数一)
8、向量空间、子空间、基底、维数、坐标等概念;(数一)
9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;
10、向量组的极大线性无关组和向量组的秩的概念和求解;
11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;
  矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。
   其中我们应当掌握:
   1、规范正交基、正交矩阵的概念以及它们的性质;
   2、内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法;
   3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;
 4、实对称矩阵的特征值和特征向量的性质;
  5、相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法;
  6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;
  7、正定二次型、正定矩阵的概念和判别法。
  8、正交变换化二次型为标准形,配方法化二次型为标准形;
    上面讲述的线性代数方程组的19个高频考点,是考研数学的高频考点,大家要认真对待学习。毛纲源 2018《考研数学常考题型解题方法技巧归纳》对现阶段的备考帮助很大,大家要认真学习,好好利用哦。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 24-11-8 03:10 , Processed in 0.484796 second(s), 10 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表