Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

单片机的一生<转>

[复制链接]
11#
 楼主| kenny2046 发表于 07-5-3 17:07:47 | 只看该作者

ARM,DSP,FPGA 的区别

ARM,DSP,FPGA  的区别
ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。这里有一篇介绍ARM结构体系发展介绍。

DSP(digital singnal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度 。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。根据数字信号处理的要求,DSP芯片一般具有如下主要特点:
(1)在一个指令周期内可完成一次乘法和一次加法;
(2)程序和数据空间分开,可以同时访问指令和数据;
(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;
(4)具有低开销或无开销循环及跳转的硬件支持;
(5)快速的中断处理和硬件I/O支持;
(6)具有在单周期内操作的多个硬件地址产生器;
(7)可以并行执行多个操作;
(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。

FPGA是英文Field Programmable Gate Array(现场可编程门阵列)的缩写,它是在PAL、GAL、PLD等可编程器件的基础上进一步发展的产物,是专用集成电路(ASIC)中集成度最高的一种。FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。用户可对FPGA内部的逻辑模块和I/O模块重新配置,以实现用户的逻辑。它还具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。作为专用集成电路(ASIC)领域中的一种半定制电路,FPGA既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。可以毫不夸张的讲,FPGA能完成任何数字器件的功能,上至高性能CPU,下至简单的74电路,都可以用FPGA来实现。FPGA如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统。通过软件仿真,我们可以事先验证设计的正确性。在PCB完成以后,还可以利用FPGA的在线修改能力,随时修改设计而不必改动硬件电路。使用FPGA来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。FPGA的编程无须专用的FPGA编程器,只须用通用的EPROM、PROM编程器即可。当需要修改FPGA功能时,只需换一片EPROM即可。这样,同一片FPGA,不同的编程数据,可以产生不同的电路功能。因此,FPGA的使用非常灵活。可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的最佳选择之一。目前FPGA的品种很多,有XILINX的XC系列、TI公司的TPC系列、ALTERA公司的FIEX系列等。

区别是什么涅?:ARM具有比较强的事务管理功能,可以用来跑界面以及应用程序等,其优势主要体现在控制方面,而DSP主要是用来计算的,比如进行加密解密、调制解调等,优势是强大的数据处理能力和较高的运行速度。FPGA可以用VHDL或verilogHDL来编程,灵活性强,由于能够进行编程、除错、再编程和重复操作,因此可以充分地进行设计开发和验证。当电路有少量改动时,更能显示出FPGA的优势,其现场编程能力可以延长产品在市场上的寿命,而这种能力可以用来进行系统升级或除错。
12#
 楼主| kenny2046 发表于 07-5-3 17:09:01 | 只看该作者

单片机初学者几个不易掌握的概念

一、总线:我们知道,一个电路总是由元器件通过电线连接而成的,在模拟电路中 ,连连线并不成为一个问题,因为各器件间一般是串行关系,各器件之间的连线并不很 多,但计算机电路却不一样,它是以微处理器为核心,各器件都要与微处理器相连,各 器件之间的工作必须相互协调?所以就需要的连线就很多了,如果仍如同模拟电路一样 ,在各微处理器和各器件间单独连线线,则线的数量将多得惊人,所以在微处理机中引 入了总线的概念,各个器件共同享用连线,所有器件的8根数据线全部接到8根公用的线 上,即相当于各个器件并联起来,但仅这样还不行,如果有两?器件同时送出数据,一 个为0,一个为1,那么,接收方接收到的究竟是什么呢?这种情况是是不允许的,所以 要通过控制线进行控制,使器件分时工作,任何时候只能有一个器件发送数据(可以有 多个器件同时接收)。器件的数据线也就被称为数据总线,器件所有的控制线被称 控制 总线。
在单片机内部或者外部存储器及其它器件中有存储单元,这些存储单元要被分配 地址,才能 用,分配地址当?也是以电信号的形?给出的,由于存储单元比较多,所以 ,用于地址分的线也较多,这些线被称为地址总线。

  二、数据、地址、指令:之所以将这三者放在一起,是因为这三者的本质都是一样的─数字,或者说都是?串‘0’和‘1’组成的序列。换言之,地址、指令也都是数据 。指令由单片机芯片的设计者规定的一种数字,它与我们常用的指令助记符有着严格的 一一对应关,不可以由 单片机的开发者更改。地址:是寻找单片机内部、外部的存储 单元、输入输出口的依据,内 单元的地址值已由芯?设计者规定好,不可更改,外部的 单元可以由单片机开发者自行决,但有一些地址单元是一定要有的(详见程序的执行过 程)。数据:这是由微处理机处理的 象,在各种 不同的应用电路中各不相同,一般而言,被处理的数据可能有这么几种情况:

1地址(如MOV DPTR,#1000H),即地址1000H送入DPTR。
2方式字或控制字(如MOV TMOD,#3),3即是控制字。
3常数(如MOV TH0,#10H)10H即定时常数。
4实际输出值(如P1口接彩灯,要灯全亮,则执行指令:MOV P1,#0FFH,要灯全暗, 则执 兄 令:MOV P1,#00H)这里0FFH和00H都是实际输出值。又如用于LED的字形码,也是实 际?出的值。 理解了地址、指令的本质,就不难理解程序运行过程中为什么会跑飞,会把数据当成指 令来 行了。
  
三、P0口、P2口和P3的第二功能用法 初学时往往对P0口、P2口和P3口的第二功能用法迷惑不解,认为第二功能和原功能之间 要有个切换的过程,或者说要有一条指令,事实?,各端口的第二功能完全是自动?,不需要?指令来转换。如P3.6、P3.7分别是WR、RD信号,当微片理机外接RAM或有外部I/O口 时,它们挥作第二功能,不能作为通用I/O口使用,只要一微处理机一执行到MOVX指令,就会有相应的信号从 P3. 或P3.7送出,不需要事先用指令说明。事实上‘不能作为通用I/O口使用’也并不是‘不能?而是(使用者)‘不会’将其作为通用I/O口使用。你完全可以在指令中按排一条S ETB P3.7的指令,并且当单片机执行到这条指令时,也会使P3.7变为高电平,但使用者不会 这么做,因为这通常这会导致系统当溃(即死机)。
  
四、程序的执行过程 单片机在通电复位后8051内的程序计数器(PC)中的值为‘0000?,所以程序总是从‘0000’单元开始执行,也就是说:在系统的ROM中一定要存在‘0000’?个单元,并且在‘0000’单元中存放的一定是一条指令。   

五、堆栈 堆栈是一个区域,是用来存放数据的,这个区域本身没有任何特殊之处,就是内部RAM的 一?份,特殊的是它存放和取用数据的方式,即所谓的‘先进后出,后进先出’,并且 堆栈有特 的数据传输指令,即‘PUSH’和甈OP’,有一个特殊的专为其服务的单元,即堆栈指 针SP 每当执一次 PUSH指令时,SP就(在原来值的基础上)自动加1,每当执行一次POP指令,SP就(在原 来值基础上)?动减1。由于SP中的值可以用指令加以改变,所以只要在程序开始阶段更改了SP值,就可以把堆栈设置在规定的内存单元中,如在程序开始时?用一条MOV SP,#5FH指令,就时把堆栈设置在从内存单元60H开始的单元中。一般程序的开头总有这 么?条设置堆栈指针的指令,因为开机时,SP的初始值为07H,这样就使堆栈从08H单元 开始往后?8H到1FH这个区域正是8031的第二、三、四工作寄存器区,经常要被使用,这会造成 数?的浑乱。不? 作者编写程序时,初始化堆栈指令也不完全相同,这是作者的习惯问 题。当设置好堆栈区?,并不意味着该区域成为一种专用内存,它还是可以象普通内存 区域一样使用,只是一般情 下编程者不会把它当成?通内存用了。   

六、单片机的开发过程 这里所说的开发过程并不是一般书中所说的从任务分析开始,我们假设已设计并制作好 硬件下面就是编写软件的工作。在编写软件之前,首先要确定一些常数、地址,事实?这些 常?、地址在设计阶段已被直接或间接地确定下来了。如当某器件的连线设计好后,其 地址也就确定了,当 器件的功能被确定下来后,其控制字也就被确定了。然后用文本编缉器(如EDIT、CCED 等)写软件,编写好后,用编译器对源程序文件编译,查错,直到没有语法错误,除了极简 单?程序外,一般应用仿真机对软件进行调试,直到程序运行正确为止。运行正确后, 就可以写(将程序固 化在EPROM中)。在源程序被编译后,生成了扩展名为HEX的目标文件,一般编程器能够 识别种格式的文件,只要将此文件调入即可写片。在此,为使大家对整个过程有个认识,举 一?说明: ORG 0000H LJMP START ORG 040H START: MOV SP,#5FH ;设堆栈 LOOP: NOP LJMP LOOP ;循环 END ;
13#
 楼主| kenny2046 发表于 07-5-3 17:09:20 | 只看该作者

单片机编程技巧--功能强大的时钟中断

功能强大的时钟中断
  在单片机程序设计中,设置一个好的时钟中断,将能使一个CPU发挥两个CPU的功效,大大方便和简化程序的编制,提高系统的效率与可操作性。我们可以把一些例行的及需要定时执行的程序放在时钟中断中,还可以利用时钟中断协助主程序完成定时、延时等操作。
  下面以6MHz时钟的AT89C51系统为例,说明时钟中断的应用。
  定时器初值与中断周期 时钟中断无需过于频繁,一般取20mS(50Hz)即可。如需要百分之一秒的时基信号,可取10mS(100Hz)。这里取20mS,用定时器T0工作于16位定时器方式(方式1)。T0的工作方式为:每过一个机器周期自动加1,当计满0FFFFh,要溢出时,便会产生中断,并由硬件设置相应的标志位供软件查询。即中断时比启动时经过了N+1个机器周期。所以,我们只要在T0中预先存入一个比满值0FFFFh小N的数,然后启动定时器,便会在N个机器周期后产生中断。这个值便是所谓的“初值”。下面计算我们需要的初值:时钟为6MHz,12个时钟周期为一个机器周期,20mS中有10000个机器周期。(10000)10=(2710)16,则0FFFFh-2710h+1=0D8F0h。由于响应中断、保护现场及重装初值还需要7~8个机器周期,把这个值再加上7,即T0应装入的初值是0D8F7h。每次中断进入后,先把A及PSW的值压入堆栈,然后即把0D8F7h装入T0。
  设置一个单元,每次中断加1 我们可以取内部RAM中一个单元,取名为INCPI(Increase Per Interrupt),在中断中,装完T0初值后,用INC INCPI指令将其加一。从这个单元中,无论中断程序还是主程序,都可以从中获得20mS的1~256之间任意整数倍的信号。例如:有一段向数码管送显的程序,需要每0.5秒执行一次以便刷新显示器,便可以设一单元(称为等待单元)W_DISP,用/MOV A,INCPI/ADD A,#25/MOV W_DISP,A/语句让其比当前的INCPI值大25,然后在每次中断中检查是否于INCPI值相等。若相等,说明已过了25个中断周期,便执行送显程序,并且让W_DISP再加上25,等待下个0.5秒。我们可以设置多个等待单元,以便取出多个不同的时基信号。让中断程序在每次中断时依次查询各个等待单元是否与INCPI相等,若相等,则执行相应的处理,并重新设置该等待单元的值,否则跳过。例如:用0.5秒信号刷新或闪烁显示器,用1秒信号产生实时时钟,或输出一定频率的方波,以一定间隔查询输入设备等。
  在中断中读键 通常,我们在主程序中读键盘,步骤为:扫描键盘,若有键按下,则延时几十毫秒去抖动,再次确认此键确实按下,然后处理该键对应的工作,完成后再次重上述步骤。但这有两点不足:1.处理相应工作时无法锁存按键的输入,即可能漏键。2.延时去抖时CPU无法做其它事情,效率不高。如果把读键放入时钟中断中,则可避免上述不足。方法为:如果两次相邻的中断中都读到同一个键按下,则这个键是有效的(达到了去抖目的),并将其锁存到先入先出(队列)的键盘缓冲区,等主程序来处理。这样,主程序处理按键的同时,仍可响应键盘的输入。缓冲区深度通常可设为8级,若锁存的键数多于8个,则忽略新的按键,并报警提示用户新的按键将无效。若键盘缓冲队列停滞的时间大大长于主程序处理按键所需要的最大时间,说明主程序已出错或跑飞,可以在中断用指令将系统复位,起到了看门狗的目的。
  主程序中的延时 由于有常开的时钟中断,所以当主程序中有需要时间较短、精度较高的延时时,应暂时把时钟中断关闭。而程序中需要时间较长、精度不高的延时时,便可仿照下需的写法,避免多层嵌套的循环延时。
  例:在P1.1输出1秒的高电平脉冲
    MOV    A,INCPI
    INC    A
    CJNE    A,INCPI$    ;等待一次中断处理完成
    SETB    P1.1        ;设P1.1为H,脉冲开始
    ADD    A,#50        ;50个20mS为1秒
    CJNE    A,INCPI,$    ;等中断将INCPI加一50次
    CLR    P1.1        ;设P1.1为L,脉冲结束
  结束语:从上看出,要灵活地应用时钟中断,将任务合理分配给中断和主程序,并且二者要分工明确,接口简单。这其中的技巧还需要大家在实践中多多摸索与体会。另外要注意:应尽量缩短中断处理程序的执行时间,更不要长于20mS。
14#
mba_xwzjg 发表于 07-5-5 13:18:19 | 只看该作者
有意思。哈哈哈。
15#
yx19850621 发表于 07-5-7 11:32:05 | 只看该作者
看到了!
不错吗,支持你!
近期来申请转正吧!
16#
jimmy_mao 发表于 07-7-29 19:50:01 | 只看该作者
好强啊!!!
真是有心啊~~
17#
yuey2008 发表于 07-7-31 15:22:46 | 只看该作者
很好,谢谢!
18#
Abit 发表于 07-8-8 14:26:59 | 只看该作者
厉害!!服了!
19#
zjj000 发表于 07-8-11 21:48:54 | 只看该作者
xiexie a
20#
fengyanwei 发表于 07-11-2 11:02:07 | 只看该作者
好文章!!!!!!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 25-1-22 09:06 , Processed in 0.104789 second(s), 11 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表