10.4.3 氢键
有些物质的分子间还存在着氢键。氢键是指分子中与高电负性原子X以共价键相连的H原子,和另一分子中一个高电负性原子Y之间所形成的一种弱键。
高电负性原子一般指F, O, N原子。当H原子和F, O, N以共价键结合成HF,H2O,NH3等分子时,成键的共用电子对强烈地偏向于F, O, N原子一边,使得H原子几乎成为“赤裸\"的质子,由于质子的半径特别小,它可以受另一分子中的F,O,N原子吸引而形成氢键。
氢键有两个特征:1、比化学键弱的多,但比范德华力稍强,其键能约在10---40kJ/mo。2、具有方向性和饱和性。氢键中X,H,Y三原子一般在一条直线上,键角接近180 o。并且每一个X---H只能与一个Y原子形成氢键。
氢键既可以发生在不同分子之间,也可发生在同一分子内部(如邻硝基苯酚)。
分子间力与物质的一些性质之间的关系:
(1)分子晶体中的作用力是分子间力,三种分子间力中的主要部分是色散力,色散力随分子量增大而增加,所以,分子量大的物质溶、沸点较高。
(2)含有氢键物质的熔、沸点比无氢键的同类物的熔、沸点都要高
(3)溶质分子和溶剂分子之间能形成氢键,溶解度增大。例如,乙酸、乙醇能溶于水,而乙醇的同分异构体二甲醚则很难溶于水。
第十二章 s区元素
12.1 s区元素概述
s区元素包括周期系第一主族(ⅠA)和第二主族(ⅡA)。第一主族元素的氧化物和氢氧化物呈碱性,故该族元素称为碱金属元素。第二主族元素的氧化物,既与碱金属氧化物类似,也与土壤中的氧化物类似,故被称为碱土金属元素。
s区元素中,Li, Rb, Cs, Be在自然界分布较分散,属于稀有元素;Fr, Ra是放射性元素。
s区元素的通性是原子最外层电子构型分别为ns1和ns2,内层均为希有气体的电子层结构。由于它们的内层电子的屏蔽效应较显著,最外层电子数又较少,使得它们很易失去最外层电子,属于最活泼的金属元素,表现出很好的金属性。
s区元素的氧化值分别为+1, +2。从碱金属元素很大的第二电离能以及碱土金属很大的第三电离能来看,它们的更高氧化值不会存在。
s区元素所形成的化合物是以离子键为特征的,但在某些条件下也显示一定的共价性,其中Li和Be具有较小的半径,极化能力较强,形成共价键的倾向比较显著。
一般说来,同周期元素随着原子序数增大,核电荷增加,原子半径减小,而电离能增大,因而碱金属元素在同周期中具有最大的原子半径和最小的电离能。同族元素之间从上到下,随着原子序数增大,原子半径也增大,电离能变小。因此,在所有元素中,Cs具有最大的原子半径,最小的电离能以及最强的金属性。
在周期表的所有族中,s区元素最明显地表示出它们的物理、化学性质随着同族内原子序数及原子半径的变化而有规律的变化。
s区元素同族内从上到下下列性质有规律地依次减小或减弱:
1、金属的熔点、沸点、升华热。
2、电离能和电负性。
3、水合热。
4、一切盐类的晶格能
5、M2分子中的共价键的强度。
6、氟化物、氢化物、氧化物、碘化物的生成焓。
碱土金属元素与碱金属元素相比,外层电子多1个电子,核电荷也多1个单位。因此,核对电子的吸引力较强,电离能较大,所以,碱土金属的金属性比碱金属弱些。 12.2 s区元素的单质
12.2.1单质的物理性质和化学性质
1、物理性质
同其它金属一样,碱金属和碱土金属的单质具有金属光泽,有良好的导电性和延伸性。
碱金属原子由于只有一个电子,而且半径较大,因而形成的金属键很弱,所以碱金属的熔、沸点都很低,硬度也很小,柔软的可以用小刀来切割。碱金属的密度很小,属于轻金属,其中Li, K, Na能浮于水面。
碱土金属原子有二个价电子,原子间作用力较强,形成的金属键比碱金属强的多。因而它们的熔、沸点比碱金属高,硬度、密度比碱金属大,但仍属于轻金属。
在金属Rb, Cs内,自由电子的活动性特别高,当其表面受到光线照射时,电子便能获得能量而从表面逸出,这种现象称为光电效应。利用这种性质,Rb, Cs被用来制造光电管中的阴极。
碱金属能形成常温下的液态合金,其中最重要的是钾钠合金(77.2%K和22.8%Na,熔点-12.5℃),具有高的比热而被用作核反应堆的冷却剂。还有钠汞齐,熔点-37℃,具有缓慢的还原性而常在有机合成上用作还原剂。
Be, Mg具有密度小、硬度较大的特点,广泛用于制造轻合金材料,用于飞机、汽车、仪表等领域。
2、化学性质
碱金属和碱土金属都是很活泼或相当活泼的金属,有很高的反应活性。这种反应活性首先表现在与非金属元素和水的反应上,钠、钾在空气中会迅速的失去银白色光泽呈灰暗色,这是被O2氧化生成氧化物的缘故。所以存储碱金属时不能与H2O和空气接触,通常放在煤油中。碱金属和卤素激烈地反应生成卤化物;与H2反应生成氢化物;与水剧烈作用生成氢氧化物,并放出H2。碱土金属元素也具有类似化学性质,只是反应程度不那么剧烈。
这两族金属同H2O的反应在同族内从上到下越来越剧烈。Li与H2O可以发生反应; Na与H2O反应猛烈,放出的热量可使金属钠熔化,但不能使生成的H2点燃;K, Rb, Cs与H2O反应可发生燃烧,甚至爆炸。值得指出的是,若根据φθ来判断,Li在水溶液中的活泼性应比Na高,与Cs差不多(φθ(Li+/Li)= -3.045v<φθ(Na+/Na)= -2.714v), 但实际上Li与水的反应不如Na剧烈,其原因有二:1、Li的熔点比Na高,反应所产生的热量足以使Na熔化,但不能使Li熔化,因而固体Li与水接触的面积不如液态Na大。2、反应产物LiOH溶解度较小,它覆盖在金属Li的表面,致使反应速度减慢,结果是Li与H2O的反应不如Na剧烈。Li的φθ值很小的原因是Li+半径特别小,极易形成水合离子,并释放出较高的水合能。
碱土金属中Be, Mg虽然能与H2O反应,但由于表面上形成一层难溶的氢氧化物,象一层保护膜一样。实际上Be, Mg和冷水几乎没有反应。Ca, Sr, Ba能与冷水反应,但反应较缓慢,不如相应的碱金属,其原因也包括生成的氢氧化物溶解度较小,覆盖在金属表面,缓和了同H2O的反应。
从碱金属和碱土金属的φθ值都很小以及电负性都很低,它们不论在水溶液中或固态反应中都具有很强的还原性,并且容易形成离子型化合物,这是s区元素的特征化学性质。
3、焰色反应
Ca, Sr, Ba及碱金属的挥发性化合物在高温火焰中灼烧时,电子易被激发。当电子从较高的能级回到较低的能级时,能级之间的能量差便以一定波长的光的形式释放出来,使火焰呈现特征的颜色,称为焰色反应。分析化学中常利用焰色反应来检验这些元素。另外,将这些元素的硝酸盐或氯酸盐以适当比例混合,并配以其它原料,可制成信号弹和各色焰火。
12.2.2 s区元素的存在和单质制备
由于s区金属化学性质相当活泼,在自然界中不能以单质形式存在,而只能以化合物形式存在。这两族金属还原性很强,其金属离子的氧化性相当弱,很难被还原。要使这些金属离子还原为金属,通常采用两种方法:
1、熔融盐电解法:外加电压来迫使Mn+接受电子转变为金属。
从理论上讲,电解任何熔融的碱金属和碱土金属盐类都可以制得单质。但为了防止金属在高温下挥发和节约能源,一般都选用熔点较低的氯化物为原料,并加入一些助熔剂使电解质的熔点进一步降低。
例如工业上电解熔融的NaCl制取金属Na,常加入一定比例的CaCl2,不仅使电解质的熔点从800℃降低到600℃,而且提高了熔盐的密度,使电解法阴极析出的Na浮在电解质液面上,易于分离。
2、热还原法:在真空中用C、Na、Ca、Si等还原剂来还原s区元素的氧化物、氯化物或碳酸盐。
例:用Si在真空中,1050℃时还原氧化锂制备金属Li。
2Li2O + Si = SiO2 + 4Li
此外 MgO + CaC2 = CaO + Mg + 2C
2KF + CaC2 = CaF2 + 2K + 2C
3Cs2O + 2Al = Al2O3 + 6Cs
一般说来,在热还原法中,用作还原剂的金属或非金属所形成的氧化物或卤化物的晶格能越大,反应越有利。
12.3 s区元素的化合物
12.3.1 氢化物
除Be, Mg外,其它s区元素在加热时,都可与H2直接反应生成氢化物。氢化物都属于离子型化合物,且具有NaCl型晶格,也称为盐型氢化物,都是白色似盐晶体。
M(除Be,Mg外)+ H2 = 氢化物(离子型化合物)
氢化物的热稳定性差异较大,同族内从上到下,随着碱、碱土金属原子序数增大,相应的氢化物的热稳定性呈现减小趋势。其中LiH最稳定,分解温度为850℃,而其它氢化物在400℃左右便会分解。
氢化物易与水作用,发生剧烈的水解反应,放出H2,生成氢氧化物。
氢化物具有很强的还原性,广泛应用与有机合成中。
氢化物具有H-,它能与B, Al等缺电子原子的化合物作用生成配位氢化物,其中以氢化铝锂Li[AlH4]、硼氢化锂Li[BH4]为最重要。它们是LiH与AlCl3或BF3在无水乙醇溶液中合成制备的。它们具有很强的还原性,在有机合成上用作还原剂,遇水后则将水中H+还原为H2。
4LiH + AlCl3 = Li[AlH4] + 3HCl
4LiH + BF3 = Li[BH4] + 3HF
12.3.2 氧化物
s区元素同氧所形成的二元化合物有三种类型:正常(普通)氧化物,过氧化物,超氧化物。其中分别含有正常氧负离子O2-,过氧根离子O22-,超氧根离子O2-。
1、正常氧化物:Li,碱土金属在空气中燃烧时能生成正常氧化物。Na, K, Rb, Cs则不能,它们的正常氧化物只能用间接地方法制备。
例:Na2O2 + 2Na = 2Na2O 2KNO3 + 10K = 6K2O + N2
生产上,碱土金属正常氧化物常利用碳酸盐、硝酸盐或氢氧化物的热分解来制备。例如,煅烧石灰石制取氧化钙。
碱金属正常氧化物的颜色从Li2O到Cs2O依次加深,碱土金属正常氧化物都是白色。
热稳定性总的趋势是从Li→Cs,Mg→Ba逐渐降低,熔点变化趋势也大体相同。
碱金属和Ca, Sr, Ba的正常氧化物与H2O反应生成相应的氢氧化物。
2、过氧化物
除了Be, Mg外,s区元素都可形成过氧化物,其中具有实际意义的主要是Na2O2和BaO2,它们可由相应金属在空气中燃烧而得到。
过氧化物中含有O22-离子,其分子轨道可表示为:[ K K(σ2S)2(σ*2S)2(σ2Px)2(Π2Py)2(Π2Pz)2(Π*2Py)2(Π*2Pz)2],对分子成键做出贡献的是(σ2Px)2,形成一个σ键,分子无未成对电子,具有反磁性。
工业上制备Na2O2的方法是将Na加热至熔化,并通入不含CO2的干燥空气,得到浅黄色的Na2O2粉末。
Na2O2与空气接触,能和CO2反应,并放出O2。
Na2O2 + 2CO2 = 2Na2CO3 + O2
Na2O2可用作高空飞行和潜水、深井作业时的供氧剂。
Na2O2与水、稀酸作用时,生成H2O2。
Na2O2 + 2H2O = 2NaOH + H2O2
所生成的H2O2立即分解放出O2,故广泛地用作氧气发生剂和漂白剂。
Na2O2在碱性介质中是一种强氧化剂,例如,能使Cr(Ⅲ)氧化成Cr(Ⅵ),在工业和分析化学中,常用它来分解矿石,使不溶于水和酸的矿石被氧化分解为可溶于水的化合物。
由于Na2O2呈强碱性,熔融时不可使用瓷制或石英容器,宜用Fe, Ni器皿。又由于Na2O2具有强氧化性,熔融时遇有Al粉,棉花,碳粉等还原性物质会发生爆炸,使用时应注意安全。
3、超氧化物
K, Rb, Cs在空气中燃烧能直接生成超氧化物。s区元素除Li, Be, Mg外,其它元素也能间接的得到超氧化物。例如,在高压高温时,Na2O2和O2作用可得到NaO2。一切超氧化物都显有深颜色,且是顺磁性物质。按分子轨道理论可知O2-离子有一个双电子σ键,有一个三电子Π键,键级1.5,有未成对电子。
超氧化物也是很强的氧化剂,与水剧烈的反应,产生O2和H2O。
2MO2 + 2H2O = O2 + H2O2 + 2MOH
所以,超氧化物常用作氧气发生剂。它们也能与CO2反应,生成O2,常用于急救器中。
4MO2 + 2CO2 = 2M2CO3 + 3O2
4、臭氧化物
干燥的K, Rb, Cs的氢氧化物与O3反应可生成臭氧化物:
3KOH + 2O3 = 2KO3 + KOHH2O + 1/2O2
臭氧化钾为橘红色晶体,可看成氧的固态载体,被用作高能氧化剂。在室温下放置,会缓慢分解为KO2和O2。
12.3.3 氢氧化物
s区金属的氢氧化物都是白色固体,置于空气中就吸水而潮解,所以固体NaOH和Ca(OH)2是常用的干燥剂。
碱金属的氢氧化物都是易溶于水的强碱,并且对皮肤、纤维有强烈的腐蚀作用,因此称为苛性碱。而碱土金属的氢氧化物溶解度较低。这两族金属的氢氧化物的溶解度都是按同族内从上到下其相应的氢氧化物溶解度增大的顺序,其中Be(OH)2和Mg(OH)2已属难溶氢氧化物,利用这点,常在生产中或分析中使Mg2+最后为Mg(OH)2沉淀除去。
在这两族元素的氢氧化物中,其碱的强度按同族从上到下碱性增强的顺序,其中Be(OH)2呈两性,Li(OH)和Mg(OH)2为中强碱,其余均为强碱。
任何碱或含氧酸都是某元素与氢、氧的化合物,从化学键角度看,都可以统一表示为R---O---H的结构。它们在水溶液中呈现酸碱性由其离解公式所决定。
R--│--O-----H → R+ + OH- 碱式离解
R-----O--│--H → RO- + H+ 酸式离解
氢氧化物究竟以何种方式离解,取决于Rn+离子的离子势Ф[fai]
Ф= Z/r 即电荷与半径之比。
如果R离子Z越大,半径越小,即Ф值越大, 也就是R离子极化能力越强,则R吸引O的电子云力量越大,R---O之间呈现显著的共价性,而O---H键受Rn+的强烈影响,其共用电子对强烈地偏向O,以致O---H键呈现显著的极性,而向离子键进一步过渡,ROH便以酸式离解为主。相反,若R的金属性较强,电荷减小,半径增大,即Ф值越小,也就是极化能力弱,则R---O键离子性增强,ROH便以碱式离解为主。用离子势来判断氢氧化物的酸碱性的经验公式为:
Ф1/2 < 0.22 呈碱性
0.22 < Ф1/2 < 0.32 呈两性
Ф1/2 > 0.32 呈酸性
对于同族元素的氢氧化物,由于R的离子电荷数和外层电子构型均相同,其Ф值主要取决于离子半径的大小。所以碱和碱土金属的氢氧化物均随离子半径的增大而碱性增强。 |