2010年考研数学跟我学弟十一期:线性代数
线性代数
已经是6月中旬了,我们的基础班也已经上完了。相信同学对数学应该有了更深一层的认识了。
在之前我写的一些文章了,总结一下,主要是强调的就是两个方面:第一,不能忽略基础知识的学习,一定要学扎实;第二,一定要灵活运用学到的知道,学会方法很重要。
下面是我找到的一些关于线性代数的相关信息,丰富一下同学的复习生活吧!还有就是附带有线性代数的讲义。
下一期我会上传一套基础班的结课模拟题!希望大家继续关注啊~~~~~
线性代数基本介绍
线性代数起源于对二维和三维直角坐标系的研究。
在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:
不可逆线性映射或矩阵的群,向量空间的线性映射的环。
线性代数也在数学分析中扮演重要角色,特别在
向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。
在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
一些有用的定理
·每一个线性空间都有一个基。
·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵。
·一个矩阵非奇异当且仅当它的行列式不为零。
·一个矩阵非奇异当且仅当它代表的线性变换是个自同构。
·一个矩阵半正定当且仅当它的每个特征值大于或等于零。
·一个矩阵正定当且仅当它的每个特征值都大于零。
[ 本帖最后由 kleriotu 于 2009-6-17 10:24 编辑 ] |