Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

[考研经验] 统计方法----数据分析的统计方法选择小结

[复制链接]
跳转到指定楼层
楼主
xinlikaoyan 发表于 09-8-14 14:26:49 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
统计方法----数据分析的统计方法选择小结   


完全随机分组设计的资料

一、              两组或多组计量资料的比较

1.两组资料:

1)大样本资料或服从正态分布的小样本资料

(1)若方差齐性,则作成组t检验

(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验

2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验

2.多组资料:

1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

二、              分类资料的统计分析

1.单样本资料与总体比较

1)二分类资料:

(1)小样本时:用二项分布进行确切概率法检验;

(2)大样本时:用U检验。

2)多分类资料:用Pearson c2检验(又称拟合优度检验)。

2. 四格表资料

1)n>40并且所以理论数大于5,则用Pearson c2

2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正 c2或用Fisher’s 确切概率法检验

3)n£40或存在理论数<1,则用Fisher’s 检验

3. 2×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验

2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验

3)行变量和列变量均为无序分类变量

(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

4. R×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c2

3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析

4)列变量和行变量均为无序多分类变量,

(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

三、              Poisson分布资料

1.单样本资料与总体比较:

1)观察值较小时:用确切概率法进行检验。

2)观察值较大时:用正态近似的U检验。

2.两个样本比较:用正态近似的U检验。

配对设计或随机区组设计

四、              两组或多组计量资料的比较

1.两组资料:

1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验

2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验

2.多组资料:

1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。

五、              分类资料的统计分析

1.四格表资料

1)b+c>40,则用McNemar配对 c2检验或配对边际c2检验

2)b+c£40,则用二项分布确切概率法检验

2.C×C表资料:

1)配对比较:用McNemar配对 c2检验或配对边际c2检验

2)一致性问题(Agreement):用Kap检验

变量之间的关联性分析

六、              两个变量之间的关联性分析

1.两个变量均为连续型变量

1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析

2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析

2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析

3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析

七、              回归分析

1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)非配对的情况:用非条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

2)配对的情况:用条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

八、              生存分析资:要求资料记录结局和结局发生的时间(如;死亡和死亡发生的时间)

1.用Kaplan-Meier方法估计生存曲线

2.大样本时,可以寿命表方法估计

3.单因素可以用Log-rank比较两条或多条生存曲线

4.多个因素时,可以作多重的Cox回归

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
沙发
 楼主| xinlikaoyan 发表于 09-8-14 14:44:04 | 只看该作者

我觉得这个知识点是统计的精华,分享了。
板凳
costaina 发表于 09-8-14 23:14:15 | 只看该作者
很实用,支持lz了
地板
rainyyu 发表于 09-8-19 00:54:52 | 只看该作者
谢谢分享。
5#
dd521520 发表于 09-8-22 09:28:59 | 只看该作者
谢谢楼主的分享
6#
pink110 发表于 09-9-11 21:25:08 | 只看该作者
很有帮助,谢谢楼主
7#
caicai22 发表于 09-9-12 17:29:41 | 只看该作者
谢谢了,看统计看的正晕呢。
8#
chunheechui 发表于 09-9-15 11:28:05 | 只看该作者
很好很强大
9#
花开中科 发表于 09-9-15 14:19:37 | 只看该作者
很概括啊。。。感谢分享
10#
shenxiaolin 发表于 09-9-16 09:25:23 | 只看该作者
很好,谢谢啊
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 24-11-16 10:59 , Processed in 0.173286 second(s), 11 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表