植物生理学plant physiology
一、植物生理学概述
(一)植物生理学的研究内容
1、定义:植物生理学(plant physiology)是研究植物生命活动规律、揭示植物生命现象本质的科学。
2、植物生理学的基本内容:
(1)细胞结构与功能:它是各种生理活动与代谢过程的组织基础;生命现象是细胞存在的运动方色。
(2)代谢生理:即水分生理、矿质与氮素营养、光合作用、呼吸作用、同化物的运输分配、以及信息传递和信号转导等;
(3)发育生理:它是各种功能与代谢活动的综合反应,包含植物的生长物质、植物的生长、分化、发育、生殖与衰老等;
(4)环境生理:主要介绍影响植物生理代谢的环境因素以及植物对不良环境的反应。
(二)植物生理学发展的发展简史:
第一阶段:植物生理学的孕育阶段
1627年荷兰人凡•海尔蒙(J.B.van Helmont)柳树实验标志着科学的植物生理学的开端。
第二阶段 诞生与成长的阶段
从1840年李比希(J.von Liebig)创立矿质营养学说到19世纪末德国植物生理学家萨克斯和他的学生费弗尔所著的两部植物生理学专著问世为止,经过了约半个世纪的时间。
第三阶段 发展、分化与壮大阶段
20世纪科学技术突飞猛进,植物生理学也快速壮大发展;30~40年代进入细胞器水平;50年代以后,跨入分子或亚分子水平;80年代阐明光合细菌反应中心三维空间结构;研究时间缩短到微秒(10-6秒)级、纳秒(10-9秒)级甚至皮秒(10-12秒)级;对植物生理活动的数学模拟。
我国的植物生理学的发展
20世纪20年代开始,钱崇澍、李继侗、罗宗洛、汤佩松讲授植物生理学、建立了植物生理实验室。
1949年以后,植物生理的研究和教学工作发展很快,在有关植物生理学的各个领域里,都取得重要进展。
二、植物细胞生理
(一)植物细胞的概述
1.细胞的共性:尽管细胞种类繁多,形态、结构与功能各异,却有基本的共同点:
1) 所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜;
2) 所有细胞都有两种核酸,即DNA和RNA,它们作为遗传信息复制与转录的载体;
3) 除个别特化细胞外,作为合成蛋白质的细胞器——核糖体,毫无例外地存在于一切细胞内;
4) 细胞的增殖一般以一分为二的方式进行分裂,遗传物质在分裂前复制加倍,在分裂时均匀地分配到两个子细胞内这是生命繁衍的基础和保证。
2.高等植物细胞特点:
原核细胞(prokaryotic cell):一般体积很小,直径为0.2~10μm不等,没有典型的细胞核,即没有核膜将它的遗传物质与细胞质分开,只有一个由裸露的环状DNA分子构成的拟核体(nucleoid)。除核糖体、类囊体外,一般不存在其它细胞器,原核细胞以无丝分裂(amitosis)方式进行繁殖。由原核细胞构成的有机体称为原核生物(prokaryote)
真核细胞(eukaryotic cell):体积较大,直径约10~100μm,其主要特征是细胞结构的区域化,即核质被膜包裹,有细胞核和结构与功能不同的细胞器(cell organelle);多种细胞器之间通过膜的联络形成了一个复杂的内膜系统。真核细胞的染色体由线状DNA与蛋白质组成,细胞分裂以有丝分裂(reduction mitosis)为主。由真核细胞构成的有机体称为真核生物(eukaryote)包括了绝大多数单细胞生物与全部的多细胞生物。
原核细胞与真核细胞的区别
区别 原核细胞 真核细胞
大小 1~10μm 10~100μm
细胞核 无核膜 有双层的核膜
染
色
体 形状 环状DNA分子 线性DNA分子
数目 一个基因连锁群 2个以上基因连锁群
组成 DNA裸露或结合少量蛋白质 DNA同组蛋白和非组蛋白结合
DNA序列 无或很少有重复序列 有重复序列
基因表达 RNA和蛋白质在同一区间合成 RNA核中合成和加工;蛋白质细胞质合成
细胞分裂 二分或出芽 有丝分裂和减数分裂,
内膜 无独立的内膜 有,分化成各种细胞器
鞭毛构成 鞭毛蛋白 微管蛋白
光合与呼
吸酶分布 质膜 线粒体和叶绿体
核糖体 70S(50S+30S) 80S(60S+40S)
营养方式 吸收,有的行光合作用 吸收,光合作用,内吞
细胞壁 肽聚糖、蛋白质、脂多糖、脂蛋白 纤维素(植物细胞)
2.高等植物细胞的主要结构
大液泡、叶绿体和细胞壁是植物细胞区别于动物细胞的三大结构特征。
(二)细胞的亚显微结构与功能
1.植物细胞壁的组成、结构和生理功能
1) 细胞壁的化学组成:构成细胞壁的成分中,90%左右是多糖,10%左右是蛋白质、酶类以及脂肪酸等。细胞壁中的多糖主要是纤维素、半纤维素和果胶类,它们是由葡萄糖、阿拉伯糖、半乳糖醛酸等聚合而成。次生细胞壁中还有大量木质素。
纤维素(cellulose):植物细胞壁的主要成分, 纤维素内葡萄糖残基间形成大量氢键,而相邻分子间氢键使带状分子彼此平行地连在一起,这些纤维素分子链都具有相同的极性,排列成立体晶格状,可称为分子团,又叫微团(micellae)。微团组合成微纤丝(microfibril),微纤丝又组成大纤丝(macrofibril),因而纤维素的这种结构非常牢固,使细胞壁具有高强度和抗化学降解的能力。存在于细胞壁中的纤维素是自然界中最丰富的多糖。
半纤维素(hemicellulose):往往是指除纤维素和果胶物质以外的,溶于碱的细胞壁多糖类的总称。它们覆盖在微纤丝之外并通过氢键将微纤丝交联成复杂的网格,形成细胞壁内高层次上的结构。
果胶类:胞间层基本上是由果胶物质组成的,果胶使相邻的细胞粘合在一起。果胶物质是由半乳糖醛酸组成的多聚体。根据其结合情况及理化性质,可分为三类:即果胶酸、果胶和原果胶。
木质素(lignin):不是多糖,是由苯基丙烷衍生物的单体所构成的聚合物,主要分布于纤维、导管和管胞中。可以增加细胞壁的抗压强度,正是细胞壁木质化的导管和管胞构成了木本植物坚硬的茎干,并作为水和无机盐运输的输导组织。
蛋白质与酶:细胞壁中最早被发现的蛋白质是伸展蛋白(extensin),它是一类富含羟脯氨酸的糖蛋白(hydroxyprolinerich glycoprotein,HRGP),大约由300个氨基酸残基组成,这类蛋白质中羟脯氨酸(Hyp)含量特别高。
矿质:细胞壁的矿质元素中最重要的是钙。细胞壁为植物细胞最大的钙库。钙调素(calmodulin,CaM)在细胞壁中也被发现,如在小麦细胞壁中已检测出水溶性及盐溶性两种钙调素。
2) 细胞壁的结构:典型的细胞壁是由胞间层(intercellular layer)、初生壁(primary wall)以及次生壁(secondary wall)组成。
细胞在分裂时,最初形成的一层是由果胶质组成的细胞板(cell plate),它把两个子细胞分开,这层就是胞间层,又称中层(middle lamella)。随着子细胞的生长,原生质向外分泌纤维素,纤维素定向地交织成网状,而后分泌的半纤维素、果胶质以及结构蛋白填充在网眼之间,形成质地柔软的初生壁。细胞在初生壁内产生次生壁。细胞内腔有时由数层次生细胞壁(S1—S3)包围,原始初生壁(CW1)和中层在最外层(ML)。
3) 细胞壁的功能
a.维持细胞形状,控制细胞生长 b.物质运输与信息传递
c.防御与抗性 d.其他功能
研究发现,细胞壁还参与了植物与根瘤菌共生固氮的相互识别作用,此外,细胞壁中的多聚半乳糖醛酸酶和凝集素还可能参与了砧木和接穗嫁接过程中的识别反应。
应当指出的是,并非所有细胞的细胞壁都具有上述功能,每一类细胞的细胞壁功能都是由其特定的组成和结构决定的。
2、植物细胞膜系统
1) 生物膜(biomembrane)是指构成细胞的所有膜的总称。按其所处位置可分为两种:一种处于细胞质外面的一层膜叫质膜,也可叫原生质膜;另一种是处于细胞质中构成各种细胞器的膜,叫内膜(endomembrane)。质膜可由内膜转化而来(如子细胞的质膜由高尔基体小泡融合而成)。
(1)生物膜的化学组成
在真核细胞中,膜结构占整个细胞干重的70%~80%。生物膜由蛋白质、脂类、糖和无机离子等组成。蛋白质约占60%~65%,脂类占25%~40%,糖占5%。经冰冻断裂处理后,细胞膜往往从脂双层中央断开。
a. 膜蛋白:物膜中的蛋白质约占细胞蛋白总量的20%~30%,它们或是单纯的蛋白质,或是与糖、脂结合形成的结合蛋白。外在蛋白(extrinsic protein)为水溶性球状蛋白质,通过静电作用及离子键等非共价键与膜脂相连,分布在膜的表面;内在蛋白(intrinsic protein)占膜蛋白总量的70%~80%,又叫嵌入蛋白或整合蛋白,其主要特征是水不溶性,分布在脂质双分子层中;跨膜蛋白(transmembrane protein),有的全部埋入疏水区,有的与外在蛋白结合以多酶复合体形式与膜脂结合:膜脂蛋白蛋白部分不直接嵌入膜,而依赖所含的脂肪酸插入脂质双分子层
b.膜脂:在植物细胞中,构成生物膜的脂类主要是复合脂类,包括磷脂、糖脂、硫脂等。磷脂(phospholipid) 是含磷酸基的复合脂。在植物细胞膜中重要的磷脂属甘油磷脂,它们是磷脂酰胆碱(卵磷脂)和磷脂酰乙醇胺(脑磷脂)。磷脂分子结构既有疏水基团,又有亲水基团。
c.膜糖:生物膜中的糖类主要分布于质膜的外单分子层。这些糖是不超过15个单糖残基所连接成的具分支的低聚糖链(寡糖链),它们大多数与膜蛋白共价结合,少部分与膜脂结合,分别形成糖蛋白和糖脂。
(2)生物膜的结构:
(a) 流动镶嵌模型(fluid mosaic model):由辛格尔(S.J. Singer)和尼柯尔森(G. Nicolson)在1972年提出,认为液态的脂质双分子层中镶嵌着可移动的蛋白质。细胞膜由流动的脂双层和嵌在其中的蛋白质组成。磷脂分子以疏水性尾部相对,极性头部朝向水相组成生物膜骨架,蛋白质或嵌在脂双层表面,或嵌在其内部,或横跨整个脂双层,表现出分布的不对称性。模型强调膜的不对称性和流动性。
膜的不对称性:主要是由脂类和蛋白质分布的不对称造成的。蛋白质在膜中有的半埋于内分子层,有的半埋于外分子层,即使贯穿全膜的蛋白质也是不对称的。另外,寡糖链的分布也是不对称的,它们大多分布于外分子层。
膜的流动性:其一是脂类分子是液晶态可动的,脂类分子随温度改变经常处于液晶态和液态的动态平衡之中,两相中脂类分子排列不同,流动性大小也不同。其二是分布于膜脂双分子层的蛋白质也是流动的,它们可以在脂分子层中侧向扩散,但不能翻转扩散。这说明了少量膜脂与膜蛋白有相对专一的作用,这种作用是膜蛋白行使功能所必须的。
(b) 板块镶嵌模型:板块镶嵌模型由贾因和怀特在1977年提出。认为,整个生物膜可以看成是由不同组织结构、不同大小、不同性质、不同流动性的可移动的“板块”所组成,高度流动性的和流动性较小的区域可以同时存在,随着生理状态和环境条件的改变,这些“板块”之间可以彼此转化。
(3)生物膜的功能:a.分室作用 b.代谢反应的场所 c.物质交换 d.识别功能
3、细胞骨架(cytoskeleton) :指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等。它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。
细胞骨架的不同功能:A、固定作用。B、运动性。C、信息传导。D、极性。
(1) 微管 (microtubule) :是存在于细胞质中的由微管蛋白(tubulin)组装成的中空管状结构。
微管的功能:
(a)控制细胞分裂和细胞壁的形成 在细胞分裂中,有丝分裂器——纺锤体(spindle)是由微管组成的。如用秋水仙素等药物处理后,微管解聚,虽不影响新的纤维素微纤丝的产生,但微纤丝排列的模式发生了变化
(b)保持细胞形状 当用秋水仙素处理破坏微管,精细胞就变成球形。
(c)参与细胞运动与细胞内物质运输
(2) 微丝 (microfilament) :比微管细而长,直径为4~6nm。由收缩蛋白构成,它类似于肌肉中的肌动蛋白,呈丝状,同时还与肌球蛋白、原肌球蛋白等构成复合物质。
微丝的功能(微丝的主要生理功能是为胞质运动提供动力):(a)参与胞质运动 ;(b)参与物质运输和细胞感应
(2) 中间纤维 20世纪60年代中期,哺乳动物细胞,后在藻类和高等植物中也鉴定出。是一类柔韧性很强的蛋白质丝,其成分比微丝和微管复杂,由丝状亚基(fibrous subunits)组成。不同组织中的中间纤维有特异性,其亚基的大小、生化组成变化都很大。
中间纤维的功能:
(a)支架作用 中间纤维可以从核骨架向细胞膜延伸,从而提供了一个起支架作用的细胞质纤维网,可使细胞保持空间上的完整性,并与细胞核定位有关。
(b)参与细胞发育与分化 有人认为中间纤维与细胞发育、分化、mRNA等的运输有关。
在一细胞中注射微量的荧光分子溶液,根据荧光分子亮度变化推测亚单位被合并到细胞骨架结构中
表1. 胞质骨架三种组分的比较
微丝 微管 中间纤维
单体 球蛋白 αβ球蛋白 杆状蛋白
结合核苷酸 ATP GTP 无
纤维直径 7nm 25nm 10nm
结构 双链螺旋 13根源纤丝组成空心管状纤维 8个4聚体或4个8聚体组成的空心管状纤维
极性 有 有 无
组织特异性 无 无 有
蛋白库 有 有 无
踏车形为 有 有 无
动力结合蛋白 肌球蛋白 动力蛋白,驱动蛋白 无
特异性药物 细胞松驰素,鬼笔环肽 秋水仙素,长春花碱,紫杉酚
4.胞间连丝
1) 胞间连丝的结构
穿越细胞壁、连接相邻细胞原生质(体)的管状通道被称为胞间连丝(plasmodesma)。由于胞间连丝使组织的原生质体具有连续性,因而将由胞间连丝把原生质体连成一体的体系称为共质体(symplast),而将细胞壁、质膜与细胞壁间的间隙以及细胞间隙等空间叫作质外体(apoplast)。共质体与质外体都是植物体内物质和信息传递的通路。胞间连丝的数量和分布与细胞的类型,所处的相对位置和细胞的生理功能密切相关。
2) 胞间连丝的功能:a.物质交换 b.信号传递
(三) 植物体内的信号传导
1.细胞信号传导概述
对于植物细胞来讲,有来自相邻细胞的刺激、细胞壁的刺激、激素、温度、光照等等刺激,连接环境刺激到植物反应的分子途径就是信号转导途径,细胞接受信号并整合、放大信号,最终引起细胞反应。这种信息在胞间传递和胞内转导过程称为植物体内的信号传导
植物的信号分子按作用范围分:胞间信号分子、胞内信号分子
2.植物细胞信号传导途径:①胞间信号传递 ②膜上信号转换 ③胞内信号转导(蛋白质可逆磷酸化) ④细胞反应。
1)胞间信号:植物体内的胞间信号可分为两类,即化学信号和物理信号。
(1) 化学信号 (chemical signals ):细胞感受刺激后合成并传递到作用部位引起生理反应的化学物质。植物激素是植物体主要的胞间化学信号。随着刺激强度的增加,细胞合成量及向作用位点输出量也随之增加的化学信号物质称之为正化学信号(positive chemical signal)。随着刺激强度的增加,细胞合成量及向作用位点输出量随之减少的化学信号物质称为负化学信号(negative chemical signal)。
(2) 物理信号(physical signal):指细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号。
电信号传递是植物体内长距离传递信息的一种重要方式,是植物体对外部刺激的最初反应。
植物的电波研究较多的为动作电波(action potential,AP),也叫动作电位,它是指细胞和组织中发生的相对于空间和时间的快速变化的一类生物电位。
3.胞间信号的传递
1)化学信号的传递
①气相中传递 易挥发性化学信号可通过植株体内的气腔网络扩散而迅速传递,乙烯和茉莉酸甲酯均属此类信号。
②韧皮部传递 如IAA、茉莉酸甲酯、寡聚半乳糖、水杨酸等都可通过韧皮部途径传递。
③木质部传递 化学信号可通过集流的方式在木质部内传递。
2)电信号的传递 植物电波信号的短距离传递需要通过共质体和质外体途径,而长距离传递则是通过维管束。
3)水力学信号的传递 水力学信号是通过植物体内水连续体系中的压力变化来传递的。
4.膜上信号的转导:刺激→受体→信号整合与放大→基因表达→反应
1) 受体与信号的感受
受体(receptor)是指在效应器官细胞质膜上或亚细胞组分中能与信号物质特异性结合,并引发产生胞内次级信号的特殊成分。与能受体结合的特殊信号物质称配体(Ligang)。受体可以是蛋白质,也可以是一个酶系。根据受体在细胞中的位置,可将它分为细胞表面受体和胞内受体。
受体的主要特性:①能与配体特殊结合;②高度的亲和力;③饱和性。
目前研究比较活跃的受体是光敏受体和激素受体以及可能起受体作用的激发子结合蛋白。
2) G蛋白(G protein):在受体接受胞间信号分子到产生胞内信号分子之间,通常认为是通过G蛋白将信号转换偶联起来,故G蛋白又称偶联蛋白或信号转换蛋白。G蛋白全称为GTP结合调节蛋白(GTP binding regulatory protein),此类蛋白由于其生理活性有赖于三磷酸鸟苷(GTP)的结合以及具有GTP水解酶的活性而得名。
二十世纪70年代初在动物细胞中发现了G蛋白的存在,进而证明了G蛋白是细胞膜受体与其所调节的相应生理过程之间的主要信号转导者。
G蛋白的信号偶联功能是靠GTP的结合或水解产生的变构作用完成。当G蛋白与受体结合而被激活时,继而触发效应器,把胞间信号转换成胞内信号。而当GTP水解为GDP后,G蛋白就回到原初构象,失去转换信号的功能。
G蛋白的发现是生物学一大成就。吉尔曼(Gilman)与罗德贝尔(Rodbell)因此获得1994年诺贝尔医学生理奖。
G蛋白一般分两大类:①异源三体G蛋白:由三种亚基(α、β、γ)构成 ②小G蛋白:只含有一个亚基的单体
5.胞内信号的转导
植物中的的第二信使,主要是:cAMP、cGMP、DAG 、IP3 、 Ca2+等。
1)钙信号系统
钙离子 植物细胞内的游离钙离子是细胞信号转导过程中重要的第二信使。胞壁是细胞最大的Ca2+库。
植物细胞中Ca2+的运输系统:质膜与细胞器上的Ca2+泵和Ca2+通道,控制细胞内Ca2+的分布和浓度;质膜上Ca2+泵将膜内的钙泵出细胞,质膜上Ca2+通道控制Ca2+内流,细胞器膜的Ca2+泵将胞质中Ca2+的积累在细胞器(胞内钙库)中, Ca2+通道则控制Ca2+外流。胞内外信号可调节这些Ca2+的运输系统,引起Ca2+浓度变化。
胞内游离钙离子浓度的变化可能主要是通过钙离子的跨膜运转或钙的螯合物的调节而实现的。
许多信号如蓝光、触摸能改变膜势和活化通道,使钙能进入,增加胞质中Ca+,这样引起K+和Cl+通道的打开,失去膨压,这种分别的转导途径通过 Ca+/钙调蛋白激酶和其他蛋白联系起来。蓝光和触摸也能通过其他路线改变细胞内的Ca+。
几乎所有的胞外刺激信号(如光照、温度、重力、触摸等物理刺激和各种植物激素、病原菌诱导因子等化学物质)都可能引起胞内游离钙离子浓度的变化,而这种变化的时间、幅度、频率、区域化分布等不尽相同,所以有可能不同刺激信号的特异性可靠钙离子浓度变化的不同形式来体现。
胞外刺激信号可能直接或间接地调节这些钙离子的运输系统,引起胞内游离钙离子浓度变化以至影响细胞的生理生化活动。如保卫细胞质膜上的内向钾离子通道可被钙离子抑制,而外向钾离子和氯离子通道则可被钙离子激活等。
胞内Ca2+信号通过其受体-钙调蛋白转导信号。现在研究得较清楚的植物中的钙调蛋白主要有两种:钙调素和钙依赖型蛋白激酶。
钙调素(calmodulin,CaM)是最重要的多功Ca2+信号受体, 148氨基酸,单链,酸性蛋白。 CaM分子有四个Ca2+结合位点。当外界信号刺激引起胞内Ca2+浓度上升到一定阈值后(一般≥10-6mol), Ca2+与CaM结合,引起CaM构象改变。而活化的CaM又与靶酶结合,使靶酶活化而引起生理反应。
目前已知有十多种酶受Ca2+-CaM的调控,如多种蛋白激酶、NAD激酶、H+-ATPase、Ca2+-ATP酶、 Ca2+通道等。在以光敏色素为受体的光信号传导过程中Ca2+-CaM的信号系统也起着重要的调节作用。生长素、光、摩擦等都可引起CaM基因活化,使CaM含量增加。
2)肌醇磷脂信号系统
肌醇磷脂是一类由磷脂酸与肌醇结合的脂质化合物,分子中含有甘油、脂酸磷酸和肌醇等基团,其肌醇分子六碳环上的羟基被不同数目的磷酸酯化,其总量约占膜磷脂总量的1/10左右,主要以三种形式存在于植物质膜中,即:
磷脂酰肌醇(PI)、磷脂酰肌醇-4-磷酸(PIP) 和磷脂酰肌醇-4,5-二磷酸(PIP2)。
特定的磷脂酶在特定的分裂位点降解膜磷脂
肌醇磷酸代谢循环过程:细胞外刺激信号或激素等物质被质膜上专一受体接受,经G-蛋白激活磷酸脂酶C(PLC),使磷脂酰肌醇-4,5-二磷酸(PIP2)水解生成二酰甘油(DAG)和肌醇-1,4,5-三磷酸(IP3),IP3与细胞内贮钙体膜上专一受体结合,促使Ca2+从液泡中释放出来,Ca2+与CaM结合形成Ca2+-CaM复合物,仍留在质膜上的DAG使蛋白激酶C(PKC)激活,催化蛋白质磷酸化;Ca2+-CaM和蛋白质(酶)磷酸化导致细胞反应。IP3产生后很快被磷酸二酯酶水解,首先产生肌醇-1,4-二磷酸(IP2),继而是肌醇单磷 |