Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

李永乐 线性代数要注重知识点的衔接与转换

[复制链接]
跳转到指定楼层
楼主
zqsuccess1008 发表于 07-4-25 18:13:30 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本文现针对线性代数课程的特点,提如下建议供考生参考。

  一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
  线性代数的概念很多,重要的有:
  代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
  往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。例如,矩阵A=(α1,α2,……,αm)与B=(β1,β2……,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,……αm与β1,β2,……βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,……αm与β1,β2,……βm等价,可知矩阵A=(α1,α2,……αm)与B=(β1,β2,……βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
  又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~BAB,即相似是合同的充分条件。
  线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
  行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
  二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
  线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
  例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。
  再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)
  又比如,对于n阶行列式我们知道:若A=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当A≠0时,可用克莱姆法则求Ax=b的惟一解;可用A证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量α1,α2,……αn可以利用行列式A=α1α2……αn是否为零来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)
  凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
  三、注重逻辑性与叙述表述
  线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,
同时还应注意语言的叙述表达应准确、简明。
  线性代数中常见的证明题型有:
  证A=0;证向量组α1,α2,……αt的线性相关性,亦可引伸为证α1,α2……,αt是齐次方程组Ax=0的基础解系;证秩的等式或不等式;证明矩阵的某种性质,如对称,可逆,正交,正定,可对角化,零矩阵等;证齐次方程组是否有非零解;线性方程组是否有解(亦即β能否由α1,α2……,αs线性表出);对给出的两个方程组论证其同解性或有无公共解;证二次型的正定性,规范形等。
  总之,数学题目千变万化,有各种延伸或变式,同学们要在考试中取得好成绩,一定要认真仔细地复习,华而不实靠押题碰运气是行不通的,必须要重视三基,多思多议,不断地总结经验与教训,做到融会贯通。
沙发
muzima 发表于 07-4-27 11:47:01 | 只看该作者
个人觉得李永乐的线性代数还是讲的很精彩的,感谢楼主分享了!!
板凳
小兀军 发表于 07-4-29 15:08:51 | 只看该作者
都听人说~`
线代是最容易拿分的了~~
请问各位是不是这样的呢~~
地板
jiandaxuezi2008 发表于 07-4-29 19:15:59 | 只看该作者
线代是最容易拿分的了
请问各位是不是这样的呢
5#
xl4501 发表于 07-5-11 00:00:38 | 只看该作者
gpofe
6#
XW660 发表于 07-5-27 15:02:28 | 只看该作者
thank you
欢迎来到免费考研网www.freekaoyan.com
7#
小猴子猴子小 发表于 07-5-30 19:30:54 | 只看该作者

回复 #3 小兀军 的帖子

我不这么看。你可以拿到历年的真体做一下,不想你想像的那样简单的(当然2007很简单)
个人观点仅工参考
8#
小猴子猴子小 发表于 07-5-30 19:32:28 | 只看该作者
李的线性代数相当厉害
9#
roki 发表于 07-5-31 00:52:13 | 只看该作者
李的线性代数相当厉害
欢迎来到免费考研网www.freekaoyan.com
10#
roki 发表于 07-5-31 00:52:24 | 只看该作者
李的线性代数相当厉害
欢迎来到免费考研网www.freekaoyan.com
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 24-12-23 08:14 , Processed in 0.434536 second(s), 12 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表