Free考研资料 - 免费考研论坛

 找回密码
 注册
12
返回列表 发新帖
打印 上一主题 下一主题

线性方程组的通解是否唯一吗?

[复制链接]
11#
 楼主| sweetliwei 发表于 07-6-15 20:53:27 | 只看该作者
怎么没人回呢
各位帮帮忙哈
12#
 楼主| sweetliwei 发表于 07-6-15 20:59:52 | 只看该作者
书上的第二个解向量是这样得来的
2(2a2-a3)-(a1+a2)=2(a2-a3)+(a2-a1)=(2,-1,-40,48)T
13#
stonemonkey 发表于 07-6-16 04:43:23 | 只看该作者
我上面的说法错了,你可以检验一下Ax=0的三个解,即(1,1,-5,6)\',(3,0,-45,54)\'和(2,-1,-40,48)\'这三个解应该是线性相关的,也就是说是可以相互表示的。或者说(2,-1,-40,48)\'是可以由另外两个向量线性表示的,或者说(3,0,-45,54)\'是可以由另外两个向量线性表示的。这样就可以说明两种答案实质上是一样的。
另外:这道题中Ax=b的三个解是可以算出来的,α1=(1,1,1,-1)\',α2=(1,0,-9,11)\',α3=(0,0,6,-7)\'。你也可以通过这个验证一下。
再另外:你的计算明显比书上的答案要简单,所以数上的解法不如你的解法。
14#
stonemonkey 发表于 07-6-16 04:46:40 | 只看该作者
其实如果按照先算出α1,α2,α3,再计算Ax=0的通解可能更快速一些。虽然计算量稍大一些,但是凑的方法不是很容易看出来的。
15#
 楼主| sweetliwei 发表于 07-6-16 10:21:03 | 只看该作者
如果先把a1,a2,a3求出来,那书上的答案就有点问题了,
a1-a2=(1,0,10,-12)\'
a2-a3=(1,0,-15,18)\'
a1-a3=(1,1,-5,6)\'
后两项是我的答案.与之等价的应该是第一项,但书上的答案(2,-1,-40,48)'与(1,0,10,-12)\'有出入啊.

欢迎来到免费考研网www.freekaoyan.com
16#
 楼主| sweetliwei 发表于 07-6-16 10:29:41 | 只看该作者
大概有点明白了.
但考试时,答案就不一定了,这怎是好?
17#
stonemonkey 发表于 07-6-16 17:50:23 | 只看该作者
原帖由 sweetliwei 于 2007-6-16 10:21 AM 发表
如果先把a1,a2,a3求出来,那书上的答案就有点问题了,
a1-a2=(1,0,10,-12)\'
a2-a3=(1,0,-15,18)\'
a1-a3=(1,1,-5,6)\'
后两项是我的答案.与之等价的应该是第一项,但书上的答案(2,-1,-40,48)' ...

你前面都写了2(2a2-a3)-(a1+a2)=2(a2-a3)+(a2-a1)=(2,-1,-40,48)T
怎么可能等于a1-a2呢?
18#
stonemonkey 发表于 07-6-16 17:50:46 | 只看该作者
原帖由 sweetliwei 于 2007-6-16 10:29 AM 发表
大概有点明白了.
但考试时,答案就不一定了,这怎是好?

一般来说考试不会出这种题的。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 25-1-10 23:27 , Processed in 0.096835 second(s), 10 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表