我老师的东西 希望对大家与所帮助
有机化学同步指导
前 言
本书是与国家教育部组织编写的十五规划全国统编教材《有机化学》(夏百根,黄乾明主编)配套的教学参考书。
本书是根据全国高等农林院校面向21世纪课程教材《有机化学》教学大纲及教学的基本要求,集应用化学系多年从事有机化学课程教学教师的丰富教学经验编写而成。本书集针对性、启发性和综合性为一体,旨在通过本书的学习,帮助同学们巩固基础知识,拓宽思路,提高灵活运用所学知识的能力,达到提高有机化学教学质量的目的。进而使同学们的分析问题和解决问题的能力得到大幅度提高。
本书对每章内容的安排如下:
Ⅰ 内容提要:简要介绍各章的重点和难点,以突出各章重点、难点之目的。
Ⅱ 例题解析:以具有代表性的典型例题,给以分析解答,以便启发同学们的思路。
Ⅲ 练习题:筛选了能反映各章重点和难点的具有代表性的练习题。旨在通过这部分习题的练习,达到巩固提高所学知识的目的。
Ⅳ习题参考答案:给出各章所附练习题参考答案,以便同学们参考。
另外,近年来报考硕士研究生的同学越来越多,为了满足报考硕士研究生同学的要求,本书还副附了2001~2003年河南农业大学硕士研究生入学试题,并附有参考答案,以便考研同学参考。
在本书的编写过程中,得到了应用化学系老师们的关心和支持,在此表示衷心感谢。
限于编者水平,不妥之处在所难免,恳请广大师生批评指正。
编 者
2003年3月于河南农业大学
第二章 烷烃和环烷烃
Ⅰ 学习要求
1.了解碳原子和氢原子的类型以及烷基。
2.掌握普通命名法和系统命名法的基本原则,并能熟练命名烷烃、环烷烃。
3.了解同系物沸点、熔点等物理性质的变化规律,掌握烷烃和环烷烃的化学性质及其影响因素。
4.掌握构象异构现象产生的原因、特点及构象异构体的命名和书写。
5.掌握环己烷的顺反异构、构象异构及二者间的区别与相互关系。掌握一元、二元取代环己烷构象异构体的命名和书写。
Ⅱ 内容提要
一.基本概念
1.碳原子和氢原子的类型:按照碳原子上直接相连的其它碳原子的数目可分为伯(1°)、仲(2°)、叔(3°)、季(4°)四种类型,与相应碳原子直接相连的氢原子称为伯(1°)、仲(2°)、
叔(3°)氢原子。不同类型的碳原子和氢原子在化学反应中表现的活性不同。
2.烷基:形式上烷烃分子中去掉一个氢原子剩下的部分称为烷基。表示方法为CnH2n+1H或R—。常见的烷基有:
常见的环烷基有:
3. 游离基:又称自由基,是具有单电子的原子或基团。它是一种活泼的反应中间体。碳游离基的稳定顺序是3°C•>2°C•>1°C•>CH3• 。产生游离基的条件是光照、高温或游离基引发剂(如过氧化物,偶氮化合物等)。
4. 次序规则:是为了确定分子构型而制订的关于如何判断基团大小的基本规则。
(1)先比较取代基与主链(或环、双键等)直接相连的原子的原子序数。原子序数大者,则该取代基为大基团(优先基团)
(2)若取代基与主链相连的原子的原子序数相同,则比较其次相连的原子原子序数。大者为大基团(优先基团)
(3)含有双键或叁键的基团,可看作是用单键连有二个或三个相同的原子或原子团。如下列烃基大小顺序为:
—C≡CH > —C(CH3)3 > —CH=CH2 > —CH(CH3)2 > —CH2CH3 > —CH3
二. 烷烃和环烷烃的结构特征及异构现象
1. 烷烃中每个碳原子均采取sp3杂化,分子中只存在碳碳σ键和碳氢σ键。碳原子为四面体构型,键角为109°28′,是非常稳定的结构。所以烷烃不易发生化学反应。
2. 环烷烃中的碳原子也是sp3杂化,但键角与环的大小有关。环的稳定性与角张力(由于键角偏离正常键角而引起)和扭转张力(由于环上各原子相互重叠而引起)有关。环越小,这两种力越大,环烷烃越不稳定。五元环,六元环结构稳定。所以小环容易开环而发生加成反应,普通环不易开环仅能发生取代反应。
3. 分子中各原子或基团相互结合的顺序和连接方式不同而引起的异构称构造异构。如正丁烷与异丁烷;环戊烷、甲基环丁烷与乙基环丙烷等
4. 在环烷烃分子中由于环限制了碳碳σ键的旋转,当环上两个或两个以上碳原子分别连有不同取代基时,便产生不同的空间构型,这种异构称为顺反异构。若两个碳原子所连的相同基团在环平面同侧,称为顺式,反之称为反式。
5. 由于以σ单键相连接的两个碳原子可围绕键轴旋转,从而造成分子中的各原子或基团呈不同的空间排布,由此引起的异构称为构象异构。不同的构象其能量不同,该构象在整个体系中所占比例也不同,最稳定构象所占比例最大,称优势构象。化合物实质上是以优势构象为主的各个构象异构体的平衡混合物。类似乙烷的有机分子有两种典型构象,交叉式和重叠式,交叉式为优势构象。类似丁烷的有机分子有四种典型构象,其稳定顺序为:
对位交叉式>邻位交叉式>部分重叠式>全重叠式。其中对位交叉式为优势构象。环己烷有两种典型构象,椅式和船式,其中椅式为优势构象。在环己烷的椅式构象中每个碳原子都有一个直立键(a键)和一个平伏键(e键),随着环的扭转,a键和e键相互转换。取代环己烷构象的稳定性规律为:取代基总是尽可能多的占据e键而得到较稳定的构象;对于某一定构型的二元或多元取代环己烷,较大取代基连在e键上稳定。
6. 构象异构体通过σ键的旋转或扭转即可相互转化。顺反异构属构型异构,构型异构体不能通过键的旋转或扭转而相互转化,只能通过化学反应(即断裂共价键)才能使一种构型转化为另一种构型。因此顺反异构体具有不同的物理性质和化学性质。
三.系统命名法
1. 烷烃的命名:(1)选主链,选择最长碳链为主链(母体);若最长碳链不只一个时,则选择取代基较多者为主链。(2)排编号,从靠近取代基一端开始,若有几种可能时,遵循“最低序列”原则。(3)定名称,按先取代基后母体顺序命名,取代基出现次序则遵循优先基团后出现的原则。其它各类有机化合物的命名都是以烷烃的命名为基础。
2. 单环烷烃的命名:(1)以碳环为母体,侧链为取代基;(2)编号时满足取代基位次最小;(3)如环上连有多个不同基团时,则遵循“次序规则”并标记其顺反构型。
四.烷烃和环烷烃的主要化学性质
1. 烷烃和环烷烃的取代反应
2. 小环烷烃的加成反应(开环反应)
Ⅲ 例题解析
例1.用系统命名法命名下列化合物
解:
(1) 2,6–二甲基–4–仲丁基辛烷
(2) 3–甲基–3–乙基庚烷
(3) 2–甲基–2–环丁基丁烷
(4) 反–1–甲基–3–异丙基环己烷
例2.写出下列化合物的优势构象(用透视式表示)
(1)顺–1–甲基–2–异丙基环己烷
(2)反–1–甲基–3–叔丁基环己烷
(3)1–甲基–2–乙基–3–异丁基环己烷
(4)戊烷绕C2—C3键旋转
解:
例3.某分子式为C7H14的饱和烃,分子中只含一个甲基,试写出该化合物的所有构造式并命名之。
解:根据分子式以及是饱和烃这一条件,可推知该化合物应为环烷烃;而只有一个甲基,则只能是一元取代的环烷烃。由此可知该化合物可能的构造式为:
Ⅳ 练习题
一. 用系统命名法命名或写出构造式
7. 丙烷的重叠式和交叉式构象 8. 反–1–氯–2–溴环己烷的稳定构象
9. (CH3)3C—C(CH3)3的稳定构象 10. 1–甲基–1–异丙基–3–氯环己烷的
优势构象
二. 选择题
1. 乙烷具有不同构象的原因是( )。
A. 碳原子为sp3杂化 B. 碳碳单键可以自由旋转
C. 该分子具有Newman投影式 D. 只有碳和氢两种元素组成
2. 1–甲基–4–叔丁基环己烷最稳定的构象是( )。
3. 1 , 4–二甲基环己烷的构象有三种
它们的稳定性顺序是( )。
A. (1) > (2) > (3) B. (2) > (1) > (3)
C. (3) > (1) > (2) D. (1) > (3) > (2)
4. 下列自由基最稳定的是( )。
5. 下列自由基最不稳定的是( )。
6. 乙基环丙烷与溴化氢的加成产物是( )。
7. 下列化合物在常温下能被溴水褪色的是( )。
8. 下列化合物含有伯、仲、叔氢的是( )
A. 2 , 2 , 4 , 4–四甲基戊烷 B. 2 , 3 , 4–三甲基戊烷
C. 2 , 2 , 4–三甲基戊烷 D. 正庚烷
9. 下列化合物沸点最高的是( ),沸点最低的是( )。
A. 正辛烷 B. 2 , 2 , 3 , 3–四甲基丁烷
C. 3–甲基庚烷 D. 2 , 3–二甲基戊烷 E. 2–甲基己烷
10.下列化合物熔点最高的是( ),沸点最高的是( )。
A. 3–甲基庚烷 B. 正辛烷
C. 2 , 2 , 3 , 3–四甲基丁烷 D. 2 , 3–二甲基己烷
11.正丁烷的四种典型构象分别是
其稳定性顺序是( )。
A. (1)>(2)>(3)>(4) B. (1)>(2)>(4)>(3)
C. (2)>(1)>(3)>(4) D. (2)>(1)>(4)>(3)
12.下列构象稳定性顺序是( )。
A. (1)>(2)>(3)>(4) B. (1)>(2)>(4)>(3)
C. (2)>(1)>(3)>(4) D. (2)>(1)>(4)>(3)
第三章 烯烃 炔烃 二烯烃
Ⅰ 学习要求
1. 了解不饱和烃的结构特点,熟练掌握烯烃、炔烃、二烯烃及烯烃顺反异构体的系统命名。
2. 掌握不饱和烃的化学反应及其应用,熟练掌握应用亲电加成反应历程,马氏规则及其影响因素判断加成反应的主要产物(或方向)。
3. 了解共轭体系的类型,掌握应用诱导效应和共轭效应判断亲电加成反应的速率。
4. 掌握鉴别烯烃、炔烃的化学方法。
5. 掌握各类碳正离子的稳定性顺序。
Ⅱ 内容提要
一.不饱和烃的结构
1. 烯烃的官能团是碳碳双键,形成双键的两个碳原子是sp2杂化。碳碳双键是由一个碳碳σ键和一个碳碳π键组成,具有刚性,不能绕碳碳双键自由旋转。π键的键能较小,易被极化,容易和亲电试剂发生亲电加成反应。
2. 在炔烃分子中碳碳叁键是官能团,形成叁键的两个碳原子是sp杂化,碳碳叁键是直线型,其中两个π键相互垂直。sp杂化的碳原子的电负性较sp2杂化的碳原子电负性大,所以炔烃中的π键比烯烃的π键较难极化,亲电加成反应炔烃较烯烃难。
3. 共轭二烯烃在结构特征上是指碳碳单键和碳碳双键交替排列的情况。即分子中有四个sp2杂化的碳原子依次相连,称做共轭链。共轭二烯烃的四个sp2碳原子共存在于同一平面,形成两个π键的四个p轨道相互平行,π键电子可在共轭链上离域,这种共轭体系的π键又称离域大π键。它更易极化,亲电反应活性高于独立的π键。
4. 共轭体系是指在分子、离子或自由基中能够形成π键或p轨道离域的体系,在共轭体系中π键电子或p轨道电子不是定域,而是离域的。这种电子在共轭体系中离域并传递的电子效应称共轭效应。共轭体系与非共轭体系相比较,具有较低的热力学能,有较高的化学反应活性和特有的化学性质,存在有键长平均化现象。共轭体系又具体分为:π–π共轭体系、p–π共轭体系、p–p共轭体系、σ–π超共轭体系和σ–p超共轭体系。
5. 共轭效应是指π键电子或p轨道电子在共轭体系中间离域并传递而产生的电子效应,仅存在于共轭体系中;诱导效应则是指σ键电子在σ键中偏移并传递的电子效应,存在于所有的极性σ键中。共轭效应的强弱不随共轭链的增长而变化,诱导效应则随着σ键的增长而迅速减弱。
6. 不同的烯烃结构对亲电加成反应活性和反应取向不同,反应活性指反应速率的大小。一般情况下,双键上电子云密度越大,亲电反应活性越大。反应取向是指区域选择性,即当反应有可能产生几种异构体时,只生成或主要生成一种产物。反应活性和反应取向于官能团直接相连的基团的性质有密切关系。双键碳原子连接有斥电子基团时,亲电反应活性增大,主要产物遵循马氏规则;双键碳原子连接有吸电子基团时,亲电反应活性降低,主要产物反马氏规则。
7. 不饱和烃的异构现象包括碳胳(架)异构;重键位置不同引起的官能团位置异构;在某些烯烃中由于双键两侧的不同基团在空间位置不同引起的顺反异构。所以相同碳数的不饱和烃的异构体比相应的烷烃多。
二.不饱和烃的化学性质
1. 烯烃的主要化学性质
2. 炔烃的主要化学性质
3. 共轭二烯烃的主要化学
Ⅲ 例题解析
例1. 用系统命名法命名下列化合物:
解:1. 3–正丙基–1–己烯 取含官能团的最长碳链为主链
2. 6–甲基–2–庚烯 优先使官能团取小编号
3. 1–甲基–5–乙基–1,3–环己烯
4. (E)–2,2,3,4–四甲基–3–己烯
5. (E)–3–乙基–3–戊烯–1–炔 取含两个官能团的最长碳链为主链
6. (2E,4Z)–2,4–庚二烯
例2.回答下列问题:
1. 下面三个化合物与HBr加成反应的活性大小次序如何?主要产物是什么?
A. CF3CH=CH2 B. BrCH=CH2 C. CH3OCH=CHCH3
2. 下列分子或离子中存在什么类型的共轭体系?
3. 比较下列碳正离子的稳定性:
4. 排列下面的化合物与HBr加成反应的活性次序:
A. CH3CH=CHCH=CH2 B. CH2=CHCH2CH3
C. CH3CH=CHCH3 D. CH2=CHCH=CH2
E. CH2=C(CH3)—C(CH3)=CH2 F. (CH3)2C=CHCH3
5. 将下列碳正离子按稳定性增大的次序排列,并说明理由。
6. 将下列化合物与异戊二烯按双烯合成反应(Diels—Alder反应)的活性顺序又大到小排列,并写出主要反应产物:
7. 比较炔键上的氢、烯键上的氢和烷烃中的氢的酸性强弱,并说明理由。
解:
1. 反应活性次序:C>B>A
反应活性大小取决于双键上π键电子云密度的大小。双键碳原子上π电子云密度增加,亲电加成反应活性增加,反之亦然。主要产物取决于生成的中间体——碳正离子的稳定性大小。主要产物为:
A. CF3CH2—CH2Br 由于—CF3为强吸电子基,则碳正离子的稳定性为:
B. Br2CH-CH3, 碳正离子的稳定性为:
前者存在有p–p共轭。
C. CH3OCHBr-CH2CH3 碳正离子的稳定性为:
前者存在有p–p共轭。
2. A. π–π共轭、σ–π共轭 B. p–π共轭、σ–π共轭和σ–p共轭
C. p–π共轭、σ–π共轭 D. p–p共轭、σ–π共轭
3. 稳定性次序:D>A>C>B
B中无p–π共轭体系,烯丙基碳正离子也遵循一般的烷基碳正离子的稳定性规律,即:叔碳正离子>仲碳正离子>伯碳正离子>甲基碳正离子
存在有共轭体系的碳正离子的稳定性比叔碳正离子的稳定性要大。
4. 活性次序:E>A>D>F>C>B
共轭二烯烃的亲电反应活性高于单烯烃;双键上连接的斥(供)电子基团越多,亲电反应越容易。
5. 稳定性次序:B>A>C>D
碳正离子连有供电子基团时,稳定性增大。在B中存在有p–π共轭的供电子效应,稳定性最好;在A中有两个供电子的甲基,而C中只有一个供电子的乙基;在D中三氯甲基对碳正离子具有强吸电子的诱导效应。
6. 反应活性:B>C>A>D
亲二烯体连有吸电子基团时,有利于双烯合成反应进行;连有供电子基团时,反应活性降低。主要反应产物分别为:
7. 酸性强弱次序:RC≡C-H>RCH=CH-H>RCH2CH2-H
这是因为炔键上碳原子为sp杂化,s成分占1/2,烯键上碳原子为sp2杂化,s成分占1/3,烷烃中的碳原子为sp3杂化,s成分占1/4。成键轨道中s成分越多,电子越靠近原子核,键的极性越强,对氢的“管束”能力越差,相应的氢就越活泼,酸性也就越强。
例3. 用反应式表示异丁烯于下列试剂的反应:
1. Br2/CCl4 2. KMnO4 5%碱性溶液 3. 浓H2SO4作用后加热水解
4. HBr 5. HBr/过氧化物 6. Icl
解:
在过氧化物存在下,烯烃于HBr发生自由基加成反应,生成反马氏规则的产物。
碘的电负性比氯小,带部分正电荷;烯烃中由于甲基的供电子作用,使双键上含氢多的碳原子带较多的负电荷,碘进攻该碳原子,生成的产物符合马氏规则。
例4. 完成下列反应
解:1. A. BrCH2CHBrCH2C≡CH 亲电加成,双键的活性高于叁键。
B. CH2=CHCH2CH=CH2 催化加氢,炔烃的活性高于烯烃。
在光照条件下,共轭二烯与Br2发生自由基取代反应,饱和氢较易被取代。
发生1,2–加成,产物中双键与苯环共轭,使其比1,4–加成产物稳定。
Ⅳ 练习题
一. 用系统命名法命名下列化合物:
1. CH3(C2H5)C=C(CH3)CH2CH2CH3 2. (CH3)2C=CHCH(C2H5)CH3
3. (CH3)2CHC≡CC(CH3)3 4. (CH3)2C=CHCH(C2H5)CH2C=C(C2H5)2
二. 完成下列反应:
三. 推导构造式
1. 某分子式为C6H10的化合物,与二摩尔氢气反应,生成2–甲基戊烷,在H2SO4—HgSO4的水溶液中生成羰基化合物,但和硝酸银的氨溶液不发生反应。试推测该化合物的构造式。
2. 一个碳氢化合物,测得其相对分子质量为80,催化加氢时,1mol样品可吸收3mol氢气,原样品经臭氧氧化,反应后水解,只得到甲醛和乙二醛。请问这个烃是什么化合物。
3. 有三个化合物甲、乙、丙,其分子式均为C6H10。甲与硝酸银的氨溶液反应,产生白色沉淀。甲、乙催化加氢以后都生成正己烷,而丙经催化加氢后得到一产物C6H12。乙、丙经臭氧氧化及在锌粉存在下水解以后,分别得到:(乙)甲醛,丁二醛;(丙)5–羰基己醛。试推断甲、乙、丙的构造式。
4. 有A、B、C三种化合物,分子式都为C5H8,它们都能使溴的四氯化碳溶液褪色,A用硝酸银的氨溶液处理生成白色沉淀,而B、C无此反应。A、B两化合物在催化剂存在下与过量的氢气作用,都生成正戊烷,在同样条件下,C仅能吸收一摩尔氢气,生成的产物为C5H10。B经酸性高锰酸钾氧化后得到乙酸和丙酸,C经酸性高锰酸钾氧化后得戊二酸。试写出A、B、C三种化合物的构造式。 |