第二章
单链表
链表是最常用、最简单和最基本的数据结构之一。我们先来看看单链表的实现。
2.1 代码实现
单链表的实现如下:
///////////////////////////////////////////////////////////////////////////////
//
// FileName : slist.h
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-29 9:58:38
// Comment :
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __SINGLE_LIST_H__
#define __SINGLE_LIST_H__
#include <assert.h>
#include <crtdbg.h>
#ifdef _DEBUG
#define DEBUG_NEW new (_NORMAL_BLOCK, THIS_FILE, __LINE__)
#endif
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#ifdef _DEBUG
#ifndef ASSERT
#define ASSERT assert
#endif
#else // not _DEBUG
#ifndef ASSERT
#define ASSERT
#endif
#endif // _DEBUG
template<typename T>
class CNode
{
public:
T data;
CNode<T> *next;
CNode() : data(T()), next(NULL) {}
CNode(const T &initdata) : data(initdata), next(NULL) {}
CNode(const T &initdata, CNode<T> *p) : data(initdata), next(p) {}
};
template<typename T>
class CSList
{
protected:
int m_nCount;
CNode<T> *m_pNodeHead;
public:
CSList();
CSList(const T &initdata);
~CSList();
public:
int IsEmpty() const;
int GetCount() const;
int InsertBefore(const int pos, const T data);
int InsertAfter(const int pos, const T data);
int AddHead(const T data);
int AddTail(const T data);
void RemoveAt(const int pos);
void RemoveHead();
void RemoveTail();
void RemoveAll();
T& GetTail();
T GetTail() const;
T& GetHead();
T GetHead() const;
T& GetAt(const int pos);
T GetAt(const int pos) const;
void SetAt(const int pos, T data);
int Find(const T data) const;
};
template<typename T>
inline CSList<T>::CSList() : m_nCount(0), m_pNodeHead(NULL)
{
}
template<typename T>
inline CSList<T>::CSList(const T &initdata) : m_nCount(0), m_pNodeHead(NULL)
{
AddHead(initdata);
}
template<typename T>
inline CSList<T>::~CSList()
{
RemoveAll();
}
template<typename T>
inline int CSList<T>::IsEmpty() const
{
return 0 == m_nCount;
}
template<typename T>
inline int CSList<T>::AddHead(const T data)
{
CNode<T> *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
return 0;
pNewNode->data = data;
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
++m_nCount;
return 1;
}
template<typename T>
inline int CSList<T>::AddTail(const T data)
{
return InsertAfter(GetCount(), data);
}
// if success, return the position of the new node.
// if fail, return 0.
template<typename T>
inline int CSList<T>::InsertBefore(const int pos, const T data)
{
int i;
int nRetPos;
CNode<T> *pTmpNode1;
CNode<T> *pTmpNode2;
CNode<T> *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// insert before head node?
if (1 == pos)
{
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// if the list is not empty and is not inserted before head node,
// seek to the pos of the list and insert the new node before it.
pTmpNode1 = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pNewNode->next = pTmpNode1;
pTmpNode2->next = pNewNode;
nRetPos = pos;
Exit1:
++m_nCount;
Exit0:
return nRetPos;
}
// if success, return the position of the new node.
// if fail, return 0.
template<typename T>
inline int CSList<T>::InsertAfter(const int pos, const T data)
{
int i;
int nRetPos;
CNode<T> *pTmpNode;
CNode<T> *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// if the list is not empty,
// seek to the pos of the list and insert the new node after it.
pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pNewNode->next = pTmpNode->next;
pTmpNode->next = pNewNode;
nRetPos = pos + 1;
Exit1:
++m_nCount;
Exit0:
return nRetPos;
}
template<typename T>
inline int CSList<T>::GetCount() const
{
return m_nCount;
}
template<typename T>
inline void CSList<T>::RemoveAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode1;
CNode<T> *pTmpNode2;
pTmpNode1 = m_pNodeHead;
// head node?
if (1 == pos)
{
m_pNodeHead = m_pNodeHead->next;
goto Exit1;
}
for (i = 1; i < pos; ++i)
{
// we will get the previous node of the target node after
// the for loop finished, and it would be stored into pTmpNode2
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pTmpNode2->next = pTmpNode1->next;
Exit1:
delete pTmpNode1;
--m_nCount;
}
template<typename T>
inline void CSList<T>::RemoveHead()
{
ASSERT(0 != m_nCount);
RemoveAt(1);
}
template<typename T>
inline void CSList<T>::RemoveTail()
{
ASSERT(0 != m_nCount);
RemoveAt(m_nCount);
}
template<typename T>
inline void CSList<T>::RemoveAll()
{
int i;
int nCount;
CNode<T> *pTmpNode;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
pTmpNode = m_pNodeHead->next;
delete m_pNodeHead;
m_pNodeHead = pTmpNode;
}
m_nCount = 0;
}
template<typename T>
inline T& CSList<T>::GetTail()
{
ASSERT(0 != m_nCount);
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T CSList<T>::GetTail() const
{
ASSERT(0 != m_nCount);
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T& CSList<T>::GetHead()
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline T CSList<T>::GetHead() const
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline T& CSList<T>::GetAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T CSList<T>::GetAt(const int pos) const
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline void CSList<T>::SetAt(const int pos, T data)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pTmpNode->data = data;
}
template<typename T>
inline int CSList<T>::Find(const T data) const
{
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
if (data == pTmpNode->data)
return i + 1;
pTmpNode = pTmpNode->next;
}
return 0;
}
#endif // __SINGLE_LIST_H__
调用如下:
///////////////////////////////////////////////////////////////////////////////
//
// FileName : slist.cpp
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-29 10:41:18
// Comment :
//
///////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include \\"slist.h\\"
using namespace std;
int main()
{
int i;
int nCount;
CSList<int> slist;
#ifdef _DEBUG
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif
slist.InsertAfter(slist.InsertAfter(slist.AddHead(1), 2), 3);
slist.InsertAfter(slist.InsertAfter(slist.GetCount(), 4), 5);
slist.InsertAfter(slist.GetCount(), 6);
slist.AddTail(10);
slist.InsertAfter(slist.InsertBefore(slist.GetCount(), 7), 8);
slist.SetAt(slist.GetCount(), 9);
slist.RemoveHead();
slist.RemoveTail();
// print out elements
nCount = slist.GetCount();
for (i = 0; i < nCount; ++i)
cout << slist.GetAt(i + 1) << endl;
}
代码比较简单,一看就明白,懒得解释了。如果有bug,请告诉我。
2.2 效率问题
考虑到效率的问题,代码中声明了一个成员变量:m_nCount,用它来记录链表的结点个数。这样有什么好处呢?在某些情况下就不用遍历链表了,例如,至少在GetCount()时能提高速度。
原书中提到了一个“表头”(header)或“哑结点”(dummy node)的概念,这个结点作为第一个结点,位置在0,它是不用的,我个人认为这样做有点浪费空间,所以并没有采用这种做法。
单链表在效率上最大的问题在于,如果要插入一个结点到链表的末端或者删除末端的一个结点,则需要遍历整个链表,时间复杂度是O(N)。平均来说,要访问一个结点,时间复杂度也有O(N/2)。这是链表本身的性质所造成的,没办法解决。不过我们可以采用双链表和循环链表来改善这种情况。
2.3 应用:一元多项式(加法和乘法)
2.3.1 基础知识
我们使用一元多项式来说明单链表的应用。假设有两个一元多项式:
P1(X) = X^2 + 2X + 3
以及
P2(X) = 3X^3 + 10X + 6
现在运用中学的基础知识,计算它们的和:
P1(X) + P2(X) = (X^2 + 2X + 3) + (3X^3 + 10X + 6)
= 3X^3 + 1X^2 + 12X^1 + 9
以及计算它们的乘积:
P1(X) * P2(X) = (X^2 + 2X + 3) * (3X^3 + 10X + 6)
= 3X^5 + 6X^4 + 19X^3 + 26X^2 + 42X^1 + 18
怎么样,很容易吧?:) 但我们是灵长类动物,这么繁琐的计算怎么能用手工来完成呢?(试想一下,如果多项式非常大的话……)我们的目标是用计算机来完成这些计算任务,代码就在下面。
2.3.2 代码实现
///////////////////////////////////////////////////////////////////////////////
//
// FileName : poly.cpp
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-30 17:32:54
// Comment :
//
///////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include \\"slist.h\\"
#define Max(x,y) (((x)>(y)) ? (x) : (y))
typedef struct tagPOLYNOMIAL
{
CSList<int> Coeff;
int HighPower;
} * Polynomial;
static void AddPolynomial(
Polynomial polysum,
const Polynomial poly1,
const Polynomial poly2
)
{
int i;
int sum;
int tmp1;
int tmp2;
polysum->HighPower = Max(poly1->HighPower, poly2->HighPower);
for (i = 1; i <= polysum->HighPower + 1; ++i)
{
tmp1 = poly1->Coeff.GetAt(i);
tmp2 = poly2->Coeff.GetAt(i);
sum = tmp1 + tmp2;
polysum->Coeff.AddTail(sum);
}
}
static void MulPolynomial(
Polynomial polymul,
const Polynomial poly1,
const Polynomial poly2
)
{
int i;
int j;
int tmp;
int tmp1;
int tmp2;
polymul->HighPower = poly1->HighPower + poly2->HighPower;
// initialize all elements to zero
for (i = 0; i <= polymul->HighPower; ++i)
polymul->Coeff.AddTail(0);
for (i = 0; i <= poly1->HighPower; ++i)
{
tmp1 = poly1->Coeff.GetAt(i + 1);
for (j = 0; j <= poly2->HighPower; ++j)
{
tmp = polymul->Coeff.GetAt(i + j + 1);
tmp2 = poly2->Coeff.GetAt(j + 1);
tmp += tmp1 * tmp2;
polymul->Coeff.SetAt(i + j + 1, tmp);
}
}
}
static void PrintPoly(const Polynomial poly)
{
int i;
for (i = poly->HighPower; i > 0; i-- )
printf( \\"%dX^%d + \\", poly->Coeff.GetAt(i + 1), i);
printf(\\"%d\\n\\", poly->Coeff.GetHead());
}
int main()
{
Polynomial poly1 = NULL;
Polynomial poly2 = NULL;
Polynomial polyresult = NULL;
#ifdef _DEBUG
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif
poly1 = new (struct tagPOLYNOMIAL);
if (NULL == poly1)
goto Exit0;
poly2 = new (struct tagPOLYNOMIAL);
if (NULL == poly2)
goto Exit0;
polyresult = new (struct tagPOLYNOMIAL);
if (NULL == polyresult)
goto Exit0;
// P1(X) = X^2 + 2X + 3
poly1->HighPower = 2;
poly1->Coeff.AddHead(0);
poly1->Coeff.AddHead(1);
poly1->Coeff.AddHead(2);
poly1->Coeff.AddHead(3);
// P2(X) = 3X^3 + 10X + 6
poly2->HighPower = 3;
poly2->Coeff.AddHead(3);
poly2->Coeff.AddHead(0);
poly2->Coeff.AddHead(10);
poly2->Coeff.AddHead(6);
// add result = 3X^3 + 1X^2 + 12X^1 + 9
AddPolynomial(polyresult, poly1, poly2);
PrintPoly(polyresult);
// reset
polyresult->Coeff.RemoveAll();
// mul result = 3X^5 + 6X^4 + 19X^3 + 26X^2 + 42X^1 + 18
MulPolynomial(polyresult, poly1, poly2);
PrintPoly(polyresult);
Exit0:
if (poly1)
{
delete poly1;
poly1 = NULL;
}
if (poly2)
{
delete poly2;
poly2 = NULL;
}
if (polyresult)
{
delete polyresult;
polyresult = NULL;
}
}
2.3.3 说明
原书中只给出了一元多项式的数组实现,而没有给出单链表的代码。实际上用单链表最大的好处在于多项式的项数可以为任意大。(当然只是理论上的。什么?你的内存是无限大的?好吧,当我没说……)
我没有实现减法操作,实际上减法可以转换成加法来完成,例如 a - b 可以换算成 a + (-b),那么我们的目标就转变为做一个负号的运算了。至于除法,可以通过先换算“-”,然后再用原位加法来计算。(现在你明白加法有多重要了吧?^_^)有兴趣的话,不妨您试试完成它,我的目标只是掌握单链表的使用,因此不再继续深究。 |